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Chapter 1

Introduction

Insurance plays a pivotal role in society, by providing risk management strategies
to safeguard entities against uncertain financial losses. Property and casualty
(P&C) insurance, which covers one’s belongings and liability, allows individuals and
businesses to mitigate the financial burden of unexpected events by transferring the
risk to an insurance company. For example, a company can mitigate the financial
consequences arising from job-related injuries by taking out workers’ compensation
insurance for its employees. To cover the costs, insurance companies pool together a
large number of entities exposed to similar risks.

Policyholders transfer the risk to the insurance company by signing an insurance
contract, which specifies the precise criteria that activate the financial compensation.
As part of the contract, policyholders need to pay a fixed premium at the beginning
of the coverage period. As such, policyholders are relieved from the financial burden
associated with the event as outlined in the contract. In return for the premium, the
insurer commits to reimbursing future losses incurred by the policyholders. However,
at the inception of the contract, the precise cost for the insurer is unknown and
this is referred to as the inverse production cycle. Consequently, one of the essential
aspects of insurance is to accurately quantify the risks and hereto related costs.

The portfolio of an insurance company typically consists of several diverse
risk profiles. The likelihood of an event occurring varies across entities, leading
to adjustments in premiums that mirror the heterogeneity of the covered risk.
Hereto, insurers rely on observable characteristics to categorize policyholders with a
comparable risk profile into tariff classes. To create and define these risk segments,
we rely on different types of risk factors. Subsequently, using predictive modeling
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2 Introduction

techniques, we estimate the loss cost as a function of the observed risk characteristics
for each segment.

Technological innovations have facilitated the process of gathering and storing
copious amounts of data. As a consequence, actuaries typically have several risk
factors at their disposal when constructing the pricing model. Furthermore, the
insurer’s database typically encompasses a wide range of covariates, including
nominal, ordinal, numeric, and spatial variables. For example, to determine the
premium for a motor insurance cover, the pricing model will commonly include
the type of fuel of the vehicle, the level occupied in the bonus-malus scale, the
policyholder’s age and residence area (see, for example, Henckaerts et al. (2018)).

To develop an insurance pricing model, actuaries rely on statistical or machine
learning methods. Both types of modeling techniques are well-equipped to handle
different types of risk factors. In general, these risk factors are organized and stored
in a tabular structure within a historical database. Notwithstanding, certain types of
variables present a challenge when incorporating them into a predictive model using
default methods. For instance, within a workers’ compensation insurance product,
we frequently encounter an industrial classification system to categorize companies
based on their economic activity. Given the extensive array of diverse economic
activities, the variable encoding this information consists of an exceedingly large
number of categories. The default method to handle nominal variables is through
dummy encoding. However, within this particular context, generalized linear models
(GLMs) may yield unreliable parameter estimates and machine learning methods
may become computationally intractable. Within machine learning, this type of risk
factor is referred to as a high-cardinality attribute. Following Ohlsson (2008), we
refer hereto as a multi-level factor (MLF). Further, in certain cases, we encounter
MLFs with a hierarchical structure. Such as the said industrial classification systems
that typically adopt a hierarchical design to classify companies.

Social network data is another type of information that creates difficulties when
attempting to integrate it in its original form, due to the tabular structure of the
insurer’s database. Within an insurance context, we employ this type of data to
represent the relationship between claims and the parties involved. Using network
data, insurers can unveil connections among individuals that remain hidden from
conventional data sources. Consequently, it can be especially valuable in detecting
insurance fraud, for example. Within the actuarial literature, there are several
papers that demonstrate the importance of social network analytics to identify
fraudsters (Van Vlasselaer et al., 2016; Óskarsdóttir et al., 2022; Tumminello et al.,
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2023). However, research on employing social network analytics to detect insurance
fraud is hindered by the lack of publicly available data.

This thesis consists of three chapters. In the first two chapters we focus on the
use of hierarchical MLFs within insurance pricing models. We investigate existing
techniques for integrating a hierarchical MLF into a predictive model. Further, we
develop a data-driven procedure to construct an insurance pricing model when both
contract-specific and hierarchically structured risk factors are available. In addition,
we present a data-driven algorithm to reduce a hierarchical MLF to its essence.
Using the algorithm, we group similar categories at every level in the hierarchy.
As such, we expand the actuary’s toolkit to handle hierarchical MLFs. The third
chapter focuses on social network analytics in insurance fraud detection. We present
a simulation engine to generate synthetic insurance fraud network data. Hereby, we
provide a powerful and flexible toolbox that is able to simulate a wide variety of
scenarios, tailored to different research purposes.

1.1 Multi-level factors

The first two chapters focus on handling hierarchical MLFs. One strategy to incorpo-
rate hierarchical MLFs into our predictive model is by introducing random effects. In
Chapter 2, we provide a comprehensive overview of the random effects approach. We
discuss which estimation methods are available and perform an in-depth comparison
of the different estimation techniques. Furthermore, we develop a data-driven work-
flow to construct an insurance pricing model when both hierarchically structured risk
factors and contract-specific risk factors are available. In addition, we also examine
the effect of the distributional assumption on the response. The random effects
approach enables us to efficiently compute and analyze the effect of the hierarchical
MLF categories. Moreover, this approach delivers an insurance pricing model that
is easy to implement and understand.

In specific instances, however, the random effects approach may not be feasible
or appropriate. This can occur when certain categories have too few observations
or when there are categories with an identical risk profile. For these situations, an
alternative solution is needed, and this is what we present in Chapter 3. In this
chapter, we propose an algorithm to simplify the hierarchical MLF to its fundamental
components. Hereto, it relies on a combination of feature engineering, clustering
techniques and cluster evaluation criteria. Our algorithm considerably reduces the
number of categories and creates a grouping that generalizes to out-of-sample data.
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4 Introduction

Furthermore, when used as a risk factor in a linear mixed model, the clustering
solution allows for a better differentiation between high-risk and low-risk companies.

1.2 Social network data

In the third and final chapter we focus on insurance fraud detection. Here, we present
a simulation engine to address the lack of publicly available insurance fraud network
data. The engine enables researchers and practitioners to generate diverse scenarios
that closely mirror real-life data sets, encompassing all the inherent challenges they
typically present (e.g., the high class imbalance). We show that the simulation
engine is capable of accurately generating the specified (network) characteristics. For
example, by specifying a network effect in the fraud generating model, we can create
a dense network of fraudulent claims which have fewer connections to non-fraudulent
claims. Further, the results indicate that, in data sets characterized by a strong
interconnectedness between fraudsters, we can improve the fraud detection model’s
accuracy by combining the traditional claim characteristics with social network
features.

1.3 Research contributions

The thesis chapters are based on the following publications and working paper:

1. Campo, B.D.C. and Antonio, K. (2023). Insurance pricing with hierarchi-
cally structured data: an illustration with a workers’ compensation insur-
ance portfolio. Scandinavian Actuarial Journal. 2023(9), 853-884. https:

//doi.org/10.1080/03461238.2022.2161413.

2. Campo, B.D.C. and Antonio, K. (2024). On clustering levels of a hierarchical
categorical risk factor. Annals of Actuarial Science. In press.

3. Campo, B.D.C. and Antonio, K. (2023). An engine to simulate insurance
fraud network data. arXiv: 2304.09046. Available at: https://arxiv.org/
abs/2304.09046.

The author published the following package on the Comprehensive R Archive
Network (CRAN):
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Campo, B.D.C. (2023). The actuaRE package: Handling Hierarchically
Structured Risk Factors using Random Effects Models. R package version
0.1.3, https://cran.r-project.org/package=actuaRE

Additionally, the following R packages were developed and released on Github:

Campo, B.D.C (2021). BiRankFraud: implementation of the BiRank
algorithm to calculate network-based fraud scores. Available at: https:
//github.com/BavoDC/BiRankFraud/.

Campo, B.D.C. (2023). iFraudSimulator: implementation of the sim-
ulation engine to generate insurance fraud network data. Available at:
https://github.com/BavoDC/iFraudSimulator/
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Chapter 2

Insurance pricing with
hierarchically structured data:
An illustration with a workers’
compensation insurance
portfolio

Actuaries use predictive modeling techniques to assess the loss cost on a contract as
a function of observable risk characteristics. State-of-the-art statistical and machine
learning methods are not well equipped to handle hierarchically structured risk
factors with a large number of levels. In this chapter, we demonstrate the data-
driven construction of an insurance pricing model when hierarchically structured risk
factors, contract-specific as well as externally collected risk factors are available. We
examine the pricing of a workers’ compensation insurance product with a hierarchical
credibility model (Jewell, 1975), Ohlsson’s combination of a generalized linear and a
hierarchical credibility model (Ohlsson, 2008) and mixed models. We compare the
predictive performance of these models and evaluate the effect of the distributional
assumption on the target variable by comparing linear mixed models with Tweedie
generalized linear mixed models. For our case-study the Tweedie distribution is well
suited to model and predict the loss cost on a contract. Moreover, incorporating

7
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contract-specific risk factors in the model improves the predictive performance and
the risk differentiation in our workers’ compensation insurance portfolio.

This chapter is based on joint work with Katrien Antonio, which is published in
the Scandinavian Actuarial Journal (Campo and Antonio, 2023).

2.1 Introduction

When pricing insurance contracts via risk classification, property and casualty (P&C
or general, non-life) insurers use observable characteristics to group policyholders
with a similar risk profile in tariff classes. To construct these tariff classes, we
either use supervised or unsupervised learning techniques or a combination of both.
For example, Henckaerts et al. (2021) developed a tariff structure using tree-based
machine learning methods, Gao and Wüthrich (2018) employed clustering techniques
to group policyholders with similar driving behavior and Zhu and Wüthrich (2021)
combined image classification with clustering techniques to differentiate between
driving styles.

Actuaries then estimate the loss cost for each constructed tariff class as a
function of the observed risk characteristics using supervised learning methods.
Within P&C insurance, continuous and geographical risk factors are typically binned
into categorical variables with a limited number of levels. This transformation is
either based on expert opinion (Frees and Valdez, 2008; Antonio et al., 2010) or
obtained in a data-driven way (Henckaerts et al., 2018). The categorical format
enables the construction of an interpretable tariff list that is easily explainable
to all stakeholders. However, certain types of risk factors pose a challenge when
we want to incorporate them in a pricing model. This particularly holds true for
hierarchically structured risk factors with a large number of levels, which are also
known as high-cardinality risk factors within the machine learning literature (Micci-
Barreca, 2001) or as multi-level risk factors (MLF) within the actuarial literature
(Ohlsson and Johansson, 2010). In this chapter, we illustrate the construction of a
data-driven insurance pricing model when both hierarchically structured risk factors
and contract-specific risk factors are available.

Currently, generalized linear models (GLMs) (McCullagh and Nelder, 1999) are
regarded as state-of-the-art for insurance pricing (Haberman and Renshaw, 1996;
de Jong and Heller, 2008; Frees, 2015). One of the main advantages of GLMs is that
the assumed distribution of the response variable belongs to the exponential family,
thereby facilitating the modeling of non-normally distributed response variables
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such as the claim frequency or severity. The frequency-severity decomposition is a
popular modeling strategy among P&C insurers (Denuit et al., 2007; Frees et al.,
2014; Parodi, 2014; Ohlsson and Johansson, 2010; Henckaerts et al., 2018, 2021),
where separate predictive models are built for the claim frequency and severity.
In this approach we include contracts that reported zero claims during the policy
period in the frequency model, but omit these when modeling the claim severity.
Alternatively, we can use a Tweedie GLM which enables modeling the zero and
continuous positive claim costs simultaneously (Jørgensen and Souza, 1994; Smyth
and Jørgensen, 2002; Ohlsson and Johansson, 2010). Recently, the traditional
GLM is being challenged by machine learning methods. In contrast to GLMs,
such methods are able to learn complex nonlinear transformations and interactions
between risk factors without having to specify them explicitly (Blier-Wong et al.,
2021). Henckaerts et al. (2021) and Yang et al. (2018), for example, showed how
tree-based machine learning methods can be used to develop pricing models that
outperform the classical GLM. Notwithstanding, machine learning methods have
their own drawbacks. They might be more prone to overfitting (Ying, 2019; Fang,
2019; Colbrook et al., 2022), less transparent (Henckaerts et al., 2022; Dastile et al.,
2020) and cannot reliably estimate the prediction uncertainty (Lakshminarayanan
et al., 2017; Ovadia et al., 2019; Tohme et al., 2022; Kläs and Vollmer, 2018).

Both GLMs and machine learning methods experience difficulties when confronted
with MLFs. Within car insurance, a typical example would be the car model. Due
to the large number of levels we often have insufficient data to get reliable parameter
estimates when using a GLM with car model as a factor variable. Further, machine
learning methods become computationally intractable when dummy encoding is
applied to the MLFs. We focus on MLFs that exhibit a hierarchical structure and a
typical example hereof, within workers’ compensation insurance, is the NACE code.
NACE stands for the statistical classification of economic activities in the European
community (European Commission and Eurostat, 2017) and is used as a hierarchical
classification system to group similar companies based on their economic activities.
The NACE code consists of 4 hierarchical levels. When only using the first two
levels, an example of a NACE code would be A03. The letter is used to identify
the first level and A stands for Agriculture, Forestry and Fishing. The numbers
following the letter identify the second level, nested within the first level. Here, 03
refers to Fishing and aquaculture. One way to handle (hierarchical) MLFs is via
preprocessing with encoding methods that transform the categorical variable into a
continuous one, see e.g. the strategy proposed in Micci-Barreca (2001).
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Alternatively, we can introduce hierarchically structured random effects into our
predictive model to handle the hierarchical MLF. Random effects make optimal
use of both the within-cluster and between-cluster claims experience. Applied
to our example, at the second level in the hierarchy, the within-cluster claims
experience for A03 refers to the experience obtained from all companies in 03 within
A. At the first level in the hierarchy, it entails the experience from all companies
within cluster A. Between-cluster experience refers to the differences observed when
comparing the claims experience across different clusters at the first (i.e. clusters A,
B, . . . ) and second (i.e. clusters within A) level in the hierarchy. Random effects
allow to account for within-cluster dependency and between-cluster heterogeneity
present in hierarchically structured data and enable the prediction of the loss cost
as a function of both the contract-specific risk factors and the hierarchical MLF.
Further, to estimate the effect of the hierarchical MLF, we only have to estimate
the variance of the (hierarchical) level-specific effects. Consequently, in comparison
to dummy encoding, the random effects approach drastically reduces the number of
parameters. A drawback of the random effects approach is that their estimation and
the interpretation of the model output is more cumbersome than with a traditional
GLM (Bolker et al., 2009; Zuur et al., 2009; Harrison et al., 2018).

The hierarchical credibility model of Jewell (1975) is one of the best-known
actuarial random effects models. In this model, only assumptions on the mean and
variance of the random variables (i.e. the response variable and the random effects)
are made, making it a distribution-free approach. The hierarchical credibility model
(or Jewell model, we use these terms interchangeably), however, does not allow the
inclusion of contract-specific risk factors. Ohlsson (2008) therefore combined a GLM
with the hierarchical credibility model which allows for a distributional assumption
on the response. Another approach that makes use of random effects is the mixed
models framework. Mixed models extend GLMs to accommodate correlated or
clustered responses. In this framework, we impose distributional assumptions on the
response, conditional on the random effects, and on the random effects. Within the
actuarial literature, there are numerous papers that illustrate and advocate their use
in ratemaking. Moreover, Frees et al. (1999) showed how several credibility models,
including the hierarchical credibility model, can be expressed as special cases of the
linear mixed model (LMM). Antonio and Beirlant (2007) gave a detailed overview of
the theory and actuarial applications of generalized linear mixed models (GLMMs)
as well as several advantages of using GLMMs. Another illustration is given in
Antonio et al. (2010), where a hierarchically structured intercompany claim data set
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on fleet contracts was analyzed using GLMMs and Bayesian estimation techniques.
This chapter contributes to the actuarial literature in three ways. First, we

provide a detailed discussion (with strengths and weaknesses) of pricing a workers’
compensation insurance product with the hierarchical credibility model (Jewell,
1975), Ohlsson’s combination of a generalized linear and a hierarchical credibility
model (Ohlsson, 2008) and via the framework of (generalized and linear) mixed
models. Second, we develop and demonstrate a comprehensive, data-driven workflow
for the use of continuous and spatial covariates in such pricing models. Third, we
compare the predictive performance of these models and evaluate the effect of the
distributional assumption on the target variable. Hereto we compare linear mixed
models and Tweedie generalized linear mixed models.

The organization of this chapter is as follows. In Section 2, we illustrate the
general structure of a workers’ compensation insurance portfolio and use this as a
basis to introduce the theoretical framework. In Section 3, we present a case study on
a workers’ compensation insurance product including an exploratory analysis, the pre-
processing of the database, the development of predictive models and the evaluation
of their predictive performance. We construct models under different distributional
assumptions for the outcome variable, using different sets of company-specific risk
factors (i.e. no risk factors, internal risk factors only, internal and externally collected
risk factors). We assess the effect of the distributional assumption and the added
value of internally and externally collected risk factors by comparing the predictive
performance of different model specifications. We conclude with a discussion in
Section 4.

2.2 Predictive modeling with hierarchically struc-

tured data in the presence of observable risk

factors

2.2.1 Portfolio of hierarchically structured risks

Within insurance pricing, we are interested in determining the loss cost Y defined
as the ratio between the claim cost Z and a corresponding exposure measure w of
a contract, such as the duration of a policy (Ohlsson and Johansson, 2010). Some
insurance portfolios are characterized by an inherent hierarchical structure and of
these, a portfolio of workers’ compensation insurance contracts is a prime example.
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This insurance product provides a financial compensation for lost wages and medical
expenses to employees who suffer from a job-related injury (European Insurance
and Occupational Pensions Authority, 2020; Stassen et al., 2017). Most often this
product is subscribed by the employer, which is typically the company where the
employee works. In a workers’ compensation insurance product, we commonly define
the loss cost Y as the ratio of the total claim amount Z to the salary mass w
(Frees, 2010; Denuit, Hainaut and Trufin, 2019). To illustrate the typical hierarchical
structure of a workers’ compensation insurance portfolio, a hypothetical example is
given in Figure 2.1. We first group the companies into different clusters based on
their primary business activity and we refer to this as the industry level. Next, we
group the companies via branches within industries. Within each of these branches,
we have several companies for which we have yearly data available. Due to the
nested structure, there will be heterogeneity between clusters and dependency among
observations belonging to the same cluster. It is of utmost importance that this is
accurately reflected in our predictive models.

In addition to the hierarchical MLF, insurance companies use historical data on
policies and claims which is their main source of information (Ohlsson and Johansson,
2010) and we refer to this as internal data. Depending on the insurer, information at
various hierarchical levels may be available. For example, at the company-level, the
insurer may have information on the company size or number of employees. This
internally collected data can be supplemented with data from an external source to
obtain complementary information on the contracts (e.g. financial statements). This
information may help in explaining an additional part of the observed heterogeneity.

Our analysis puts focus on the loss cost Yijkt

Yijkt =
Zijkt

wijkt
(2.1)

where we account for inflation by using the year-specific salary mass wijkt. Here, i
serves as an index for the risk profile based on the internally and externally collected
company-specific risk factors, j denotes the industry, k the branch and t the annual
or repeated observations. Using these indices, the company-specific covariate vector
is denoted as xijkt.
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Figure 2.1: Hierarchical structure of a hypothetical example.
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2.2.2 Random effects model specification

We specify the following functional form for a random effects model that satisfies
our requirements

g(E[Yijkt|Uj , Ujk]) = µ+ x⊤ijktβ + Uj + Ujk

= ζijkt
(2.2)
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where g(·) denotes the link function (for example the identity or log link), µ the
intercept, xijkt the company-specific covariate vector and β the corresponding
parameter vector. With the model parameters µ and β we capture the company-
specific effects. To assess the effect of the hierarchical MLF, we introduce the random
effects Uj and Ujk which capture the unobservable effects of the industry and the
branch in which the company operates. Uj denotes the industry-specific deviation
from µ+x⊤ijktβ and Ujk denotes the branch-specific deviation from µ+x⊤ijktβ+Uj .
We assume that the random industry effects Uj are independent and identically
distributed (i.i.d.) with E[Uj ] = 0 and Var[Uj ] = σ2

I . Similarly, the random branch
effects Ujk are assumed to be i.i.d. with E[Ujk] = 0 and Var[Ujk] = σ2

B . We do not
specify any company-specific random effects since we want to construct an a priori
pricing model.

We refer to the right hand-side of equation (2.2) as the systematic model com-
ponent, which specifies how the company-specific covariates and hierarchical MLF
are combined with µ,β, Uj and Ujk to give the linear predictor ζijkt. Next to this
systematic component, we introduce a distributional assumption for the conditional
response Yijkt|Uj , Ujk. We assume that the distribution belongs to the exponential
family with probability density function (pdf)

f(Yijkt|µ,β, Uj , Ujk, ϕ, wijkt) =

exp

{
Yijktθijkt − ψ(θijkt)

ϕ
wijkt + c(yijkt, ϕ, wijkt)

} (2.3)

where ψ(·) and c(·) are known functions, ϕ denotes the dispersion parameter and
θijkt is the natural parameter. Further, the following conditional relations hold

g−1(ζijkt) = E[Yijkt|Uj , Ujk] = ψ
′
(θijkt),

Var[Yijkt|Uj , Ujk] =
ϕ

wijkt
ψ

′′
(θijkt) =

ϕ

wijkt
V (g−1(ζijkt)),

(2.4)

where V (·) denotes the variance function.

Given the continuous nature of the registered losses, we can choose to model
the loss cost by assuming a Gaussian distribution with an identity link function.
However, a disadvantage of the Gaussian assumption is the handling of contracts
with a zero loss cost (i.e. no claim occurred). Moreover, when fitting a Gaussian
distribution on a sample containing zero-valued observations, the resulting fit will
implicitly assume the existence of negative values due to the symmetric nature of
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this distribution. Consequently, this may inadvertently lead to predictions with a
negative value which is undesirable in a pricing model. To address this shortcoming
of the Gaussian distribution, we can opt for either the frequency-severity or Tweedie
approach to appropriately model the zero and non-zero valued observations. The
advantage of the Tweedie approach, compared to the frequency-severity strategy, is
that we are able to model the claim frequency and severity simultaneously. This
allows us to estimate the loss cost directly.

One of the most defining characteristics of the Tweedie distribution (see Delong
et al. (2021), for example) is the relationship between the variance function and the
mean

Var[Yijkt|Uj , Ujk] =
ϕ · (g−1(ζijkt))p

wijkt
(2.5)

with p ∈ (−∞, 0] ∪ [1,∞). The Tweedie family of distributions encompasses a large
range of distributions, which are characterized by the value of p (see Table 2.1).

Table 2.1: The power parameter p and its associated distribution.

Value of p Distribution
p = 0 Normal
p = 1 Poisson

p ∈ (1, 2) Compound Poisson - Gamma
p = 2 Gamma
p = 3 Inverse Gaussian

2.2.3 Parameter estimation

Hierarchical credibility model The basic hierarchical credibility model of Jewell
(1975) corresponds to a random effects model where no company-specific covariates
(i.e. x⊤ijktβ = 0 in (2.2)) are included and where g(·) is the identity link function

E[Yijkt|Uj , Ujk] = µ+ Uj + Ujk. (2.6)

We refer to (2.6) as the additive Jewell model. We focus on the estimation of the
industry expectation Vj = µ+ Uj and the branch expectation Vjk = µ+ Uj + Ujk

(Dannenburg et al., 1996). These represent the conditional mean of all observations
in industry j and of all observations in branch k within industry j, respectively,
since E[Yijkt|Uj ] = Vj and E[Yijkt|Uj , Ujk] = Vjk. Following Ohlsson (2005; 2008),
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we rewrite the hierarchical credibility model of Jewell (1975) as

E[Yijkt|Vj , Vjk] = Vjk and E[Yijkt|Vj ] = Vj . (2.7)

We make the following assumptions

Assumption 1.

(a) The industries are independent, i.e. (Yijkt, Vj , Vjk) and (Yi′j′k′t′ , Vj′ , Vj′k′) are
independent for j ̸= j′.

(b) For every j, conditional on the industry effect Vj , the branches are independent,
i.e. (Yijkt, Vjk) and (Yi′jk′t′ , Vjk′) are conditionally independent for k ̸= k′.

(c) All the pairs (Vj , Vjk), j = (1, . . . , J); k = 1, . . . ,Kj ; are identically distributed,
with E[Vj ] = µ > 0, E[Vjk|Vj ] = Vj , Var[Vj ] = σ2

I and E[Var[Vjk|Vj ]] = σ2
B .

(d) For any (j, k), conditional on (Vj , Vjk), the Yijkt are independent, with mean
Vjk and with variance satisfying E[Var[Yijkt|Vj , Vjk]] = σ2/wijkt.

We use µ = E[Yijkt] = E[Vj ] = E[Vjk] to denote the overall expectation. Using
Assumption 1 (c) and (d), it follows that

Var[Yijkt] = E[Var[Yijkt|Vj , Vjk]] + Var[E[Yijkt|Vj , Vjk]]

=
σ2

wijkt
+ σ2

I + σ2
B .

(2.8)

The credibility estimator of Vj (Dannenburg et al., 1996; Ohlsson, 2005, 2008), under
Assumption 1, is defined as

V̂j = qj Ȳ
z
·j·· + (1− qj)µ, (2.9)

where

Ȳ·jk· =

∑
i,t wijktYijkt∑

i,t wijkt
, zjk =

w·jk·
w·jk· + σ2/σ2

B

,

Ȳ z
·j·· =

∑
k zjkȲ·jk·∑

k zjk
, and qj =

zj·
zj· + σ2

B/σ
2
I

,

(2.10)

and we define w·jk· =
∑

i,t wijkt. The credibility estimator of Vjk is specified as

V̂jk = zjkȲ·jk· + (1− zjk)V̂j . (2.11)
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Here, qj and zjk are the credibility factors at the industry- and branch-level, respec-
tively. Ȳ·jk· represents the weighted average for the kth branch within industry j and
serves as an estimator of the average loss cost at the branch level. The estimator
of the average loss cost at the industry level is denoted by Ȳ z

·j·· and we use the
superscript z to indicate that we weigh the averages Ȳ·jk· with the credibility factors
zjk instead of the original weights w·jk·. The latter estimators, however, are not
optimal for clusters that have a low number of observations. We therefore use the
credibility estimators V̂j and V̂jk, which are a weighted sum of a more stable average
and a less stable, more cluster-specific average. To use these credibility estimators,
we first require estimators of the variance parameters σ2, σ2

I and σ2
B as well as an

estimator of µ (see Appendix A.1). We refer the reader to Dannenburg et al. (1996),
Ohlsson (2005) and Ohlsson and Johansson (2010) for detailed information on these
estimators. Next, we predict the damage rate using Ŷijkt = V̂jk.

The hierarchical credibility model is relatively easy to implement and computa-
tionally light, which is one of its advantages. Furthermore, we only require estimates
of the mean and variance parameters to obtain the random effect estimates. Sta-
tistical inference on the estimated parameters, however, is not possible with this
distribution-free approach.

Combining the hierarchical credibility model with a GLM Ohlsson (2008)
reformulates the hierarchical credibility model in (2.7) as a multiplicative random
effects model by defining Vj = µ̃ Ũj and Vjk = µ̃ Ũj Ũjk = VjŨjk. Consequently,

E[Yijkt|Ũj , Ũjk] = µ̃ Ũj Ũjk (2.12)

and we refer to (2.12) as the multiplicative Jewell model. To obtain this multiplicative
structure in (2.2) we define g(·) = log(·). In this case, µ̃ = eµ, Ũj = eUj and
Ũjk = eUjk . To allow for company-specific covariates, Ohlsson extends (2.12) to

E[Yijkt|Ũj , Ũjk] = µ̃ γijkt Ũj Ũjk = γijktVjk (2.13)

where γijkt denotes the effect of the company-specific covariates. We add a distri-
butional assumption and assume that Yijkt|Ũj , Ũjk ∼ T (γijktVjk, ϕ

wijkt
(γijktVjk)

p)),
where T denotes any member of the Tweedie family (see Table 2.1). To estimate
the parameters in this model, Ohlsson (2008) devised the iterative GLMC (GLMs
with credibility) algorithm which is given in Algorithm 1.
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Algorithm 1: Iterative GLMC algorithm (Ohlsson, 2008)

Model: E[Yijkt|Ũj , Ũjk] = µ̃ γijkt Ũj Ũjk

Initialization: Set ̂̃U j =
̂̃
U jk = 1

repeat

1 Estimate µ̃, γijkt and p using a GLM with log link, include the log(
̂̃
U j)

and log(
̂̃
U jk) as offset variables and the wijkt’s as weights. This yields

ˆ̃µ, γ̂ijkt and p̂;
2 Use ˆ̃µ and γ̂ijkt to estimate σ2, σ2

B and σ2
I with the hierarchical

credibility model (Dannenburg et al., 1996; Ohlsson, 2005, 2008) ;
3 Compute V̂j and V̂jk using the estimates from steps 1 and 2 (see (2.9)

and (2.11)). Calculate ̂̃U j = V̂j/µ̂ and ̂̃U jk = V̂jk/V̂j ;
until convergence;

We initialize the model by setting ̂̃U j =
̂̃
U jk = 1 and proceed to the first step,

where we fit a GLM. When fitting the GLM, we include log(
̂̃
U j) and log(

̂̃
U jk) as

offset variables and the wijkt’s as weights. This results in the GLM estimates µ̂
(intercept), β̂ (company-specific parameter vector) and p̂ (the power parameter).
We compute ˆ̃µ = eµ̂ and γ̂ijkt = ex

⊤
ijktβ̂ to proceed to the second step. Here, we first

transform the response variable Yijkt and weight wijkt as

Ỹijkt =
Yijkt
γijkt

and w̃ijkt = wijktγ
(2−p)
ijkt . (2.14)

Consequently,

E[Ỹijkt|Vj , Vjk] =
1

γijkt
γijktVjk = Vjk,

E[Ỹijkt|Vj ] =
1

γijkt
γijktVj = Vj ,

E
[
Var
[
Ỹijkt|Vj , Vjk

]]
= E

[
1

γ2ijkt

ϕ · (γijktVjk)p
wijkt

]
(2.15)

=
ϕ · E[(Vjk)

p]

wijktγ
(2−p)
ijkt

=
σ2

w̃ijkt
.

where σ2 = ϕ · E[(Vjk)
p]. Ỹijkt and w̃ijkt now satisfy the assumptions of the

hierarchical credibility model (see Assumption 1), thereby enabling us to estimate
the variance parameters and to calculate V̂j and V̂jk using equations (2.9) and
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(2.11). In the third step, we compute the random effect estimates ̂̃U j = V̂j/µ̂ and̂̃
U jk = V̂jk/V̂j using the estimates from steps 1 and 2. Steps 1 to 3 are repeated
until the algorithm has converged. Once converged, we predict the damage rate as
Ŷijkt = ˆ̃µ γ̂ijkt

̂̃
U j

̂̃
U jk.

Similarly to the hierarchical credibility model, Ohlsson’s GLMC algorithm is
relatively easy to implement, computationally light and only requires estimates of
the mean and variance parameters to obtain the random effect estimates. Further,
Ohlsson’s approach allows for statistical inference on the parameters estimated by
the GLM. Hereto, we use the fitted GLM from the last run in Algorithm 1 and base
the inference on the following likelihood∏

j

∏
k

∏
i,t

f(Yijkt|µ̂, β̂, p̂, log( ̂̃U j), log(
̂̃
U jk), ϕ, wijkt) (2.16)

where the log-transformed random effects ̂̃U j and ̂̃U jk enter as constants. Hence,
the statistical inference on µ̂ and β̂ ignores the variability in the random effects.

Mixed models (Generalized) Linear mixed models (GLMMs) are considered
an extension of (G)LMs to the case where responses are correlated or clustered
(Molenberghs and Verbeke, 2005; Tuerlinckx et al., 2006). They are founded in a well-
developed statistical framework that provides us with the appropriate inferential tools.
The framework of mixed models encompasses a wide range of model specifications,
including models with hierarchically structured random effects.

Applied to our setting, the general equation for a mixed model is the same as
in equation (2.2). We assume that Yijkt|Uj , Ujk ∼ E(g−1(ζijkt), ϕ

wijkt
V (g−1(ζijkt))),

where E denotes any member of the exponential family, and make a distributional
assumption on the random effects Uj and Ujk. In most applications we assume
that Uj ∼ N (0, σ2

I ), Ujk ∼ N (0, σ2
B) (McCulloch and Neuhaus, 2011; Drikvandi

et al., 2017), where N denotes the normal distribution. Verifying these assumptions,
however, is often not straightforward. The linear mixed model (LMM) is a special
case of a GLMM, where we define E := N and use the identity-link function g(·).
The additive hierarchical credibility model discussed in (2.6) is a special case of
an LMM and both use the same equations to estimate µ, Uj and Ujk (Frees et al.,
1999). The variance parameters, however, are estimated differently in the additive
hierarchical credibility model compared to the LMM.

We maximize the marginal likelihood to obtain estimates of the parameters
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µ,β, ϕ, σ2
I , σ

2
B (and p in case of a Tweedie GLMM). The marginal likelihood is

obtained by integrating out the random effects and is given by

∏
j

∫ ∏
k

∫ ∏
i,t

f(Yijkt|Θ, Uj , Ujk, ϕ, wijkt)f(Ujk|σ2
B)dUjk

 f(Uj |σ2
I )dUj . (2.17)

where Θ = (µ,β, p) for a Tweedie GLMM and Θ = (µ,β) for other GLMMs. For
an LMM, an analytical expression is available for the integrals. In this case, we
use the generalized least squares estimator to estimate µ and β and rely on either
maximum likelihood or restricted maximum likelihood estimators for the estimation
of the parameters ϕ, σ2

I and σ2
B. Conversely, in most GLMMs there is no analytic

expression available for the integrals in (2.17) and we therefore rely on numerical
approximations to estimate the parameters. These approximations can be subdivided
into those that approximate the integrand, the data or the integral. A detailed
discussion on the different approximation methods is covered in Molenberghs and
Verbeke (2005), Tuerlinckx et al. (2006) and Frees et al. (2014). In mixed models,
we base the statistical inference on (2.17) and we account for the variability in the
random effects when performing inference on µ̂ and β̂. Further, several hypothesis
tests are available for the variance parameters σ2

I and σ2
B .

To predict the realized values of the random effects Uj and Ujk, we rely on em-
pirical Bayes estimates. Hereto, we base the estimation on the posterior distribution
of the random effects given Yijkt,Θ, ϕ, wijkt, σ

2
I and σ2

B (Fitzmaurice et al., 2008;
Molenberghs and Verbeke, 2005; Skrondal and Rabe-Hesketh, 2009). The density of
the posterior distribution of Uj is

∝
∏
k

∫ ∏
i,t

f(Yijkt|Θ, Uj , Ujk, ϕ, wijkt) f(Ujk|σ2
B) dUjk f(Uj |σ2

I ). (2.18)

For Ujk, the density of the posterior distribution is

∝
∫ ∏

i,t

f(Yijkt|Θ, Uj , Ujk, ϕ, wijkt) f(Uj |σ2
I ) dUj f(Ujk|σ2

B). (2.19)

The estimates Ûj and Ûjk are those values for Uj and Ujk that maximize the
corresponding posterior densities. In these densities, the unknown parameters are
replaced by their maximum likelihood estimates. For LMMs, we have a closed-form
solution for Ûj and Ûjk. Conversely, for most GLMMs we do not have an analytical
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expression available and we have to rely on numerical approximations. Hereafter,
we predict the damage rate using

Ŷijkt = g−1(µ̂+ x⊤ijktβ̂ + Ûj + Ûjk). (2.20)

2.2.4 Computational aspects and implementation in R

We perform our estimations with the statistical software R (R Core Team, 2019). To
estimate the random effects model with the hierarchical credibility model (Jewell,
1975) and the combination of the hierarchical credibility model with a GLM (Ohlsson,
2008), we developed our own package called actuaRE. This package is publicly
available on https://www.github.com. For mixed models, a multitude of software
implementations are available alongside with detailed documentation. We rely on
the lme4 (Bates et al., 2015) and cplm (Zhang, 2013) packages to estimate the
random effects model using the mixed model framework.

Estimation via the hierarchical credibility model, as discussed in Section 2.2.3, is
fastest in terms of computation time. Estimation via (G)LMMs is by far the slowest
as they require the approximation and maximization of complicated likelihoods.
Computationally, GLMMs are complex and they are more likely to experience
convergence problems (see Bolker et al. (2022) for information on how to handle
convergence warnings). Related hereto is that, in certain situations, we may obtain
negative variance estimates and this may occur for all estimation methods. Within
the mixed models framework, this is a well-known problem (Pryseley et al., 2011).
Negative variance estimations may be due to low variability (Oliveira et al., 2017)
or a misspecification of the hierarchical MLF (Pryseley et al., 2011).

2.3 Case study: workers’ compensation insurance

We illustrate the predictive model building work flow on a workers’ compensation
insurance data set from a Belgian insurer. In this data set, we have a hierarchical
MLF and company-specific covariates at our disposal. Further, we have the company
identification number for each of the companies in the portfolio which enables us to
retrieve company-specific financial information from an external data source. We
refer to the externally acquired data as the external database. To preserve the
confidentiality of the data, we omit all confidential information. Hereto, we either
remove all values from the figures or apply a transformation when showing values.

https://www.github.com
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2.3.1 Internal data set

To prevent that large claims distort our findings, we start the analysis by capping
large claim amounts Zhijkt using concepts from extreme value theory (EVT) (Beirlant
et al., 2005). Here, the index h refers to an individual claim of company i operating
in branch k within industry j in year t. In the analysis we use the ratio of Zhijkt

to a year-specific correction factor ct, thereby accounting for inflation. Using tools
from EVT, we determine the threshold τ between the attritional losses and the large
losses. We transform τ to a year-specific threshold using τt = τ × ct and cap Zijkt

as follows
Z̃hijkt = min(Zhijkt, τt) (2.21)

where Z̃hijkt denotes the capped claim amount. Thereafter, we redistribute the total
capped amount among all claims based on their share in the total cost. Hereby,
we ensure that the total claim amount after redistribution equals the total claim
amount before capping. Given the confidentiality of the data, we do not disclose
how we redistribute the total capped amount.

After this first data preprocessing step, we compute the damage rate for each of
the individual companies as

Yijkt =

∑
hZhijkt

wijkt
. (2.22)

The empirical distribution of the damage rates Yijkt of the individual companies
is visualized in panel (a) of Figure 2.2. The empirical distribution is characterized
by a strong right skew and this right skew is still present when log transforming
Yijkt for Yijkt > 0 (see Figure 2.2(b)). Of all the individual damage rates Yijkt, 85%
equals zero and 7.5%1 of the Yijkt’s are larger than one (Figure 2.2(a)). Hence, the
majority of the damage rates are either zero or relatively low compared to the salary
mass.

We use the individual Yijkt and corresponding wijkt to compute the weighted
average of the damage rates at the industry- and branch-level

Ȳ·j·· =

∑
i,k,t wijktYijkt∑

i,k,t wijkt
, Ȳ·jk· =

∑
i,t wijktYijkt∑

i,t wijkt
(2.23)

and visualize these in the treemaps in Figure 2.3. Panel (a) shows the Ȳ·j··’s and

1The “0.4% of Yijkt’s” in Campo and Antonio (2023) refers to the damage rates calculated using
the original, uncapped claim amount Zhijkt (see (2.22)).
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Figure 2.2: Empirical distribution of the damage rates Yijkt of the individual companies.

panel (b) the Ȳ·jk·’s. In the treemaps, the summed salary mass of the industries and
branches within industries determines the size of the rectangles and a color gradient
is used for the weighted averages. The larger the summed salary mass, the larger
the rectangle and the larger the weighted average, the darker the color.

Figure 2.3: Tree maps depicting hierarchical structure.
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Considerable variation is present between industries as well as within industries
in the weighted averages. In addition, we see that the Ȳ·jk·’s are more similar within
industries than between industries (see Figure 2.3(b)). For industry K, for example,
the Ȳ·jk·’s are visibly larger than those of industry D and within industry K, there
are clear differences between the different branches (e.g. between K1 and K7).
Consequently, an indispensable part of the variation of Yijkt seems to be attributable
to the industry and branch in which the companies operate.

In addition to the hierarchical MLF, we have company-specific covariates at our
disposal, such as the number of full-time equivalents (FTEs) or the company type.
We refer to these covariates as the internal variables. For a particular level l of a
covariate, we calculate the weighted average of the damage rates as

Ȳl =

∑
(i,j,k,t) ∈ l

wijktYijkt∑
(i,j,k,t) ∈ l

wijkt
. (2.24)

Here,
∑

(i,j,k,t) ∈ l indicates that the summation is limited to those observations
that are categorized into level l. For example, when computing Ȳl with l = 1 for
internal variable 1, we only consider the Yijkt’s of companies that have the
value 1 for internal variable 1. By comparing the Ȳl across the different levels
we empirically explore whether certain levels are considered to be more risky than
others with a marginal, empirical analysis.

Figure 2.4 shows the Ȳl’s for the internal variables. To preserve the confidentiality
of our findings, we randomly allocate the postal codes to different regions on the
map. We preserve this allocation throughout the article for consistency of the results.
The weighted average mainly differs between the levels of the variables internal

variable 2, internal variable 3, internal variable 4 and postal code.

2.3.2 External data set

The second source of information is the Bel-First database (https://belfirst.
bvdinfo.com) which contains the financial statements of all Belgian private entities
that file their financial accounts to the National Bank of Belgium (Bureau Van Dijk,
2020). For each of the companies, we have yearly data available in the Bel-First
database. We link the claims observed during year t with the financial performance
indicators for year t − 1. For example, we extract the financial information of
company i in year 2019 and link this to the registered claims of company i in 2020.

https://belfirst.bvdinfo.com
https://belfirst.bvdinfo.com
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Figure 2.4: Comparison of the Ȳl’s per covariate.
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We retrieve information on 30 variables, 26 of which are related to the financial
situation of the company and we are able to retrieve information for approximately
70% of the companies. For all extracted variables, we have occasional missing values.
For 30% of the companies we are not able to retrieve any financial information since
these companies are not obliged to report to the National Bank of Belgium. Of this
30%, the majority of the companies are categorized as independent natural persons,
craftsmen. A minority of this 30% are non-profit organizations, private companies
with a limited liability, Belgian companies/associations without accounts or Belgian
companies/associations that do not file their account in a standard model.

Using the available financial information, additional variables are created. We
specify a binary variable that indicates whether the company is considered to be a
zombie firm or not and we use the definition of McGowan et al. (2018). According
to McGowan et al. (2018), a firm is identified as a zombie firm when its interest
coverage ratio (ICR) has been less than one for at least three consecutive years and
if the company is at least 10 years old. Next to this zombie variable, we compute the
relative change of the variables that are commonly associated with growth. These
variables are sales, number of employees, total assets, cash flow and added value
(see, for example, Vanacker and Manigart (2008)). The relative change at time t for
a variable X is then computed as (Xt −Xt−1)/|Xt−1|.

2.3.3 Binning continuous and spatial company-specific covari-
ates

In order to arrive at an interpretable tariff list that is easily explainable to all
stakeholders, we transform continuous and spatial company-specific covariates to
categorical ones. Hereto we employ a data-driven binning strategy based on the work
of Henckaerts et al. (2018). We use a different strategy for continuous and spatial
variables to account for the variable type. For continuous variables, we want to
preserve the ordering and only allow for the binning of consecutive values. Conversely,
for spatial variables we want a strategy that enables us to merge non-adjacent postal
codes. In this section, we provide a general description of the binning process.

Continuous variables. We start the binning process of a continuous variable by
fitting a univariate generalized additive model (GAM) to the company-level data.
In this exploratory preprocessing step, we do not include any random effects in the



Case study: workers’ compensation insurance 27

GAM for computational simplicity and fit the following model

g(E[Yijkt|BFxijkt, xijkt]) = µ+ BFxijktβBF + I(xijkt available)f(xijkt) (2.25)

where i serves as an index for the company. BFxijkt is a binary variable indicating
that no financial information is available for company i in the Bel-First database,
xijkt is the external variable, I(xijkt available) indicates whether xijkt is known
(I(xijkt available) = 1) or not (I(xijkt available) = 0) and f(·) denotes the smooth
effect. This model specification allows us to use all available external information
and we hereby do not omit information from companies that either cannot be found
in the Bel-First database or that can be found in the Bel-First database, but have a
missing value for the covariate. Missing values are assumed to be missing at random
for companies found in the Bel-First database. Given the size of our data set we opt
for the simplicity of the indicator method to handle missing data (Bennett, 2001).
In addition, we include BFxijkt as a confounding variable to account for the fact
that certain companies are not found in the Bel-First database. The wage bills wijkt

are incorporated as weights. To examine the effect of the distributional assumption,
we perform this procedure once using univariate GAMs with a Gaussian distribution
and identity link and once using univariate GAMs with a Tweedie distribution and
log link.

An illustration of the binning process for the variable net added value is given
in Figure 2.5 when assuming a Gaussian distribution for the response in the GAM.
The histogram on the left side of the figure shows the empirical distribution of the
continuous variable (after limiting its range to non-outlying values to focus on the
pattern seen in the majority of the companies) and the figure on the right side shows
the fitted smooth effect g−1(µ+ f̂(xijkt)) (black solid line) together with the 95%
confidence interval (black dashed lines). The blue bars on the right side depict the
empirical weighted averages by consecutively grouping values until they contain at
least 5% of the observations.

The fitted smooth effect is binned with a regression tree and the resulting bins
are inspected in detail for every covariate. In addition to inspecting the fitted smooth
effect and the resulting bins at the original scale of the covariate, we assess the
binning based on the log-transformed counterpart for positively valued covariates
and we choose the binning that best approximates the empirical weighted averages.
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Figure 2.5: Illustration of the binning process for continuous covariates. The histogram
on the left shows the empirical distribution of the variable net added value,
after limiting its range to non-outlying values. The figure on the right depicts
the fitted smooth effect g−1(µ + f̂(xijkt)) (black solid line) together with
the 95% confidence interval (black dashed lines). Here, the blue bars depict
the empirical weighted averages by consecutively grouping values until they
contain at least 5% of the observations.

Spatial variable. For postal code, we first construct preliminary clusters by using
only the first two digits of the postal code. We use dummy variables to encode the
two-digit postal code and fit the following model to the company-level data

g(E[Yijkt|Uj , Ujk]) = µ+ x⊤ijktβ + Uj + Ujk. (2.26)

where the covariate vector xijkt consists of the dummy variables. The model is fit
using Ohlsson’s iterative algorithm (see Algorithm 1) and the estimated coefficients
are clustered using the Ckmeans.1d.dp algorithm (Wang and Song, 2011). To select
the number of clusters nc, we perform a grid search with the AIC as criterion.
The results of the clustering strategy are shown in Figures 2.6(a) and 2.6(b) when
assuming a Gaussian and Tweedie distribution for the response, respectively. The
Gaussian model specification results in seven separate clusters and the Tweedie
model specification results in nine clusters. After clustering, we refit the model
using Ohlsson’s algorithm. The colors in the plot depict the estimated damage rate
for each of the clusters. We calculate the estimated damage rate for cluster Cl as
ŶCl

= g−1(µ+ β̂Cl
) for l = (1, . . . , nc). Here, β̂Cl

denotes the estimated coefficient
for cluster Cl. Overall, both results closely resemble each other and are in line with
the results of our exploratory analysis shown in Figure 2.4.
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Figure 2.6: Results binning two-digit postal code.

(a) Gaussian assumption. (b) Tweedie assumption.

2.3.4 Development of the predictive model

We split the data into a training and test set. We use the training set to develop the
predictive model and the test set to assess its predictive performance. The training
set contains data from the first seven years and the test set contains data from the
eighth and most recent year.

Preselection of the external covariates. Considering that we have a substan-
tial amount of externally selected company-specific covariates, we first perform a
preliminary variable selection to retain the most important external covariates. Since
this step determines which external covariates are investigated further, we rely on
the well-developed statistical framework of mixed models. This framework enables
us to accurately estimate the external covariate parameters and to calculate the
marginal AIC (mAIC) of the fitted GLMM (Saefken et al., 2014). The mAIC focuses
on the fixed effects and we use this criterion to select the covariates that fit the
data well. We start by fitting univariate GLMMs (i.e. only one external covariate is
included) to the company-level data with the following general equation

g(E[Yijkt|Uj , Ujk]) = µ+ BFxijktβBF + Extx
⊤
ijktβExt + Uj + Ujk. (2.27)

Here, Extxijkt consists of the dummy variables for the binned external covariate as
obtained from Section 3.3 and βExt denotes the corresponding parameter vector.
To make the model identifiable, observations with a missing value for the external
covariate serve as a reference. We compute the mAIC of the univariate GLMM as
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specified in (2.27) using

mAIC = −2 log(f(Yijkt|Θ, ϕ, σ2
I , σ

2
B)) + 2(np + q + 1) (2.28)

where log(f(Yijkt|Θ, σ2, σ2
I , σ

2
B) denotes the marginal log-likelihood (see equation

(2.17)), Θ = (µ, βBF ,βExt, p) for Tweedie GLMMs and Θ = (µ, βBF ,βExt) for other
GLMMs, np the number of parameters of the external covariate plus intercept and
q the number of variance parameters of the random effects. Note that we add a
one to np + q to account for the estimation of the dispersion parameter ϕ. In case
of a Tweedie GLMM, we add a two to np + q to account for the estimation of the
dispersion parameter ϕ and the power parameter p. We use the mAIC values to
select the top 5 covariates. We rely on the mAIC, since information criteria are
better suited for model selection than statistical tests (Burnham and Anderson,
2002).

This procedure results in a different set of preselected external covariates, depend-
ing on the assumed distribution for the response. Comparing the results based on
the LMM and Tweedie GLMM, we see that external variable 2 and external

variable 3 are the only variables that are selected by both models.

Using the internal and preselected external variables, we compute the damage rate
Yijkt for each possible combination of company-specific covariates and hierarchical
MLF values and one such combination determines a tariff class. We use i as an
index for the tariff class and calculate Yijkt as

Yijkt =

∑
hZhijkt∑
h whijkt

(2.29)

where Zhijkt refers to the capped claim amount of the hth company in tariff class i
operating in branch k within industry j at time t and

∑
h whijkt represents the sum

of the corresponding salary masses. All possible tariff classes are combined into a
tariff table.

Variable selection. Next, we apply best subset regression (Beale et al., 1967;
Hocking and Leslie, 1967) with the Akaike Information Criterion (AIC) (Akaike,
1974) as selection criterion. The general model equation is given by

g(E[Yijkt|Uj , Ujk]) = µ+ Intx
⊤
ijktβInt + BFxijktβBF + ZxijktβZ

+ Extx
⊤
ijktβExt + Uj + Ujk.

(2.30)
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where subscripts Int and Z refer to the internal variables and zombie variable,
respectively. Extxijkt refers to the covariate vector of the external covariates with
corresponding parameter vector βExt. The observations with missing values serve
as a reference for the zombie and external variables.

To estimate the parameters in equation (2.30) we use Ohlsson’s GLMC algorithm.
We fit models with all possible combinations of the company-specific covariates
and include the hierarchical MLF in all models. We opt for Ohlsson’s GLMC
algorithm given its simplicity and computational efficiency. In comparison, GLMMs
are computationally heavy, frequently experience convergence issues and are therefore
not suited for exhaustive variable selection methods using this data set. Ohlsson’s
estimation method, however, does not allow us to calculate the mAIC since this
method does not maximize the marginal likelihood. We therefore extract the AIC
from the GLM fit resulting from the last iteration in Ohlsson’s GLMC algorithm
and we select the model with the lowest AIC. Hereby, we select the best fitting
parsimonious model from a set of fitted models.

We first perform best subset regression with the set of internal covariates only
and in every model, we include the hierarchical MLF. Following this, we perform
best subset regression with the set of external covariates and include the selected
internal covariates, BFxijkt and hierarchical MLF in all models. As such, we first
identify the most important internal covariates that are readily available to the
insurer and only include external covariates if they have an added predictive value.
We perform this procedure once with a Gaussian model specification and identity
link and once with a Tweedie model specification with a log link.

Table 2.2 shows the results of the variable selection procedure. In the internal
covariates only models, the first two internal variables and two-digit postal code

binned are selected. When external covariates are entered, external variable 2

is selected in the Gaussian model. Conversely, with the Tweedie model specification
the first and third external variable are selected.

Benchmark models. The models resulting from best subset regression allow
us to examine the predictive performance when we use internally and externally
collected company-specific covariates as well as a hierarchical MLF. We also fit a
hierarchical credibility model and an intercept-only (G)LMM to the training set
which serve as benchmark models.
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Table 2.2: Results best subset regression.

Gaussian Tweedie

Predictor Internal only Internal + external Internal only Internal + external

In
te

rn
al

Internal variable 1 × × × ×
Internal variable 2 × × × ×
Internal variable 3
Internal variable 4
Two-digit postal code binned × × × ×

E
xt

er
na

l Available information Bel-First × ×
External variable 1 ×
External variable 2 ×
External variable 3 ×

2.3.5 Inspecting the model fits on the training set

Following, we refit and refine the selected models. To evaluate the distributional
assumption on the target variable and the goodness of fit, we examine the estimated
effect sizes of the company-specific covariates and random effects (Section 2.3.5) as
well as the fitted values on the training set (Section 2.3.6) in detail. An appropriate
distributional assumption will provide a good fit with the data. In this case, the
estimated values of the company-specific parameters and random effects are expected
to be in line with the findings of the exploratory analysis in Section 2.3.1.

Examining the company-specific covariates We refit the models selected
by best subset regression, as sketched in Section 2.3, using GLMMs and use the
95% confidence intervals (CIs) of the estimated coefficients of the company-specific
covariates to refine the model. For variables with a large number of levels, we need
an alternative strategy. Here, we want to reduce the number of levels. Hereto, we
use the multi-type Lasso (Reynkens et al., 2018) with the Fused Lasso penalty for
these variables to merge consecutive levels in a data-driven way. To account for
the hierarchical structure, we use the random effect estimates of the GLMMs and
specify these as offset variables in the multi-type Lasso. We include the salary mass
as weight.

Figures 2.7(a) and 2.7(b) show the estimated coefficients of the company-specific
risk factors and the 95% CIs for the internal covariates only models (i.e. the models
resulting from best subset regression with only internal covariates). The direction
of the estimated coefficients (positive or negative) is the same for the LMM and
Tweedie GLMM. In addition, the model fits confirm the findings of our exploratory
analysis. Considering that none of the confidence intervals are close to zero, no
adjustments are made to the internal covariates only models.
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Figure 2.7: Internal covariates only models.

(a) LMM. (b) Tweedie GLMM.
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When adding external covariates to the internal covariates only LMM, external
variable 2 is selected by best subset regression. For the Tweedie GLMM, the
covariates external variable 1 and external variable 3 are selected. For the
internal and external covariates LMM, we merge two levels of external variable

2 since the point estimates are approximately the same and the 95% CIs show
a large overlap. Hence, in this model we retain the external covariates BFxijkt

and external variable 2. Further, based on the results of the multi-type Lasso,
external variable 1 and external variable 3 are removed from the internal
and external covariates Tweedie model and BFxijkt is the only remaining external
covariate in (2.30). After these adjustments, the internal and external covariate
models are refit. Figures 2.8(a) and 2.8(b) show the estimated coefficients of the
external covariates only.

Figure 2.8: Internal + external covariates models: coefficient estimates external covari-
ates.

(a) LMM (b) Tweedie GLMM.

When rounded, the estimated power parameter p̂ = 1.77 in both the internal
covariates only and internal and external covariates Tweedie GLMMs, which corre-
sponds to a claim-size distribution with mode in zero since p̂ ∈ (1.5, 2) (Jørgensen
and Souza, 1994). This value seems appropriate considering that our data set is
characterized by a large amount of Yijkt = 0 (see Section 2.3.1).

Examining the random effect estimates. To examine and compare the random
effect estimates across the different estimation methods, we plot the estimates
obtained for the industries and branches. Figure 2.9 shows the random effect
estimates of the industries for the LMMs and Tweedie GLMMs. In these plots, we
add the random effect estimates of the hierarchical credibility model (see Section
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2.2). For the LMMs, we use the additive Jewell model (see equation (2.6)) and for
the Tweedie GLMMs, we use the multiplicative Jewell model (see equation (2.12)).
We use the exponent of the random effect estimates of the Tweedie GLMMs to be
able to compare these with the estimates resulting from the multiplicative Jewell
model.

The random effect estimates of the LMMs are approximately equal to those
of the additive Jewell model. In addition, the random effect estimates of the
internal covariates only LMM (blue) and internal and external LMM (green) are
nearly identical. This causes the estimates to overlap in the left plot of Figure 2.9.
In contrast, the differences across the different estimation methods are larger for
the multiplicative models. Here, we see a large difference between the random
effect estimates of the Tweedie GLMMs and the random effect estimates of the
multiplicative Jewell model. Comparing the random effect estimates of the industries
across the different Tweedie GLMMs, we see that these are slightly higher for the
internal and external covariates model compared to estimates of the intercept only
and internal covariates only models. In contrast, the random effect estimates of
the branches are approximately equal for all Tweedie GLMMs (see Appendix A.2).
There are, however, large differences between the random effect estimates of the
branches estimated by the multiplicative Jewell model and those estimated by the
Tweedie GLMMs. We therefore inspect these estimates in detail for a selected group
of branches, but can only give the overall conclusion due to the confidentiality of
the data. We observe large contract-specific damage rates Yijkt as well as high
weighted averages Ȳ·jk· in branches with large corresponding random effect estimates.
Both the estimation method as well as the distributional assumption seem to have
an impact on the random effect estimates. The results indicate that the random
effect estimates of the Tweedie GLMMs are more in line with the empirical results
compared to the random effect estimates of the multiplicative Jewell model.

2.3.6 Inspecting the fitted values on the training set

Next, we examine the fitted values on the company-level training set in more detail.
We focus on the (Gaussian and Tweedie) internal covariates only models and we use
the hierarchical credibility model as a benchmark. We compute the damage rate for
an individual company as

Yhijkt =
Zhijkt

whijkt
(2.31)
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Figure 2.9: Random effect estimates of the industries.
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where Zhijkt denotes the capped claim amount of the hth company of tariff class
i operating in branch k within industry j at time t and whijkt is the salary mass.
Ŷhijkt stands for the fitted damage rate. To enable a detailed description of the
results whilst preserving the confidentiality of the data, we multiply both Yhijkt and
Ŷhijkt with a constant.

Balance property. For insurance applications, it is crucial that the models provide
us a reasonable premium volume at portfolio level. Hereto, we examine the balance
property (Bühlmann and Gisler, 2006; Wüthrich, 2020) on the training set. That is,∑

i,j,k,t

wijkt Yijkt =
∑
i,j,k,t

wijkt Ŷijkt (2.32)

where i serves as an index for the tariff class. GLMs fulfill the balance property
when we use the canonical link (see Wüthrich (2020)). For LMMs and hence, the
hierarchical credibility model this property also holds. Conversely, most GLMMs do
not have this property. To regain the balance property, we introduce a quantity α

α =

∑
i,j,k,t wijkt Yijkt∑
i,j,k,t wijkt Ŷijkt

(2.33)

which quantifies the deviation of the total predicted damage from the total observed
damage. In case of the log link, we can then use α to update the intercept to
µ̂+ log(α) to regain the balance property. We therefore update the intercept for all
Tweedie GLMMs, at the level of the training data, and calculate the fitted values
using the updated intercept.

Company-specific covariate levels. The internal covariates only models contain
the first two internal variables and two-digit postal code binned. For each tariff
class i, we compute the empirical weighted average of the damage rates Ȳ·i··· and
weighted average of the predictions ¯̂

Y ·i··· using

Ȳ·i··· =

∑
h,j,k,t whijktYhijkt∑

h,j,k,t whijkt
and ¯̂

Y ·i··· =

∑
h,j,k,t whijktŶhijkt∑

h,j,k,t whijkt
. (2.34)

Figure 2.10 depicts the results for two different tariff classes. The plots on the left
show the empirical distribution of the Yhijkt’s together with the Ȳ·i··· . The plots on
the right show the distribution of the Ŷhijkt’s and the ¯̂

Y ·i··· of the different models.
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For the majority of the tariff classes, the predictions of the Tweedie model most
closely correspond with what we observe empirically. Overall, we observe that, as
the range of the Yhijkt’s increases, the range of the Ŷhijkt’s increases correspondingly.
The predictions are centered at Ȳ·i··· and ¯̂

Y ·i··· is approximately equal to Ȳ·i···. In
comparison, for the LMM we have negative Ŷijkt’s and the predictions show a larger
deviation from what we observe in the data.

Hierarchical MLF levels. To inspect the predictions at the different hierarchical
MLF levels, we split the company-level training set using the hierarchical MLF. We
compute the empirical weighted average of the damage rates Ȳ··jk· and weighted
average of the predictions ¯̂

Y ··jk· using

Ȳ··jk· =

∑
h,i,t whijktYhijkt∑

h,i,t whijkt
and ¯̂

Y ··jk· =

∑
h,i,t whijktŶhijkt∑

h,i,t whijkt
. (2.35)

Figure 2.11 shows the results for branch D4 in industry D (associated with a
low random effect of the branch and industry) and for branch P2 in industry P
(associated with a high random effect for the branch and industry). As before, the
Tweedie GLMM predictions most closely resemble the empirical results in most
branches. The range of the Ŷhijkt’s increases as the range of the Yhijkt’s increases,
¯̂
Y ··jk· is approximately equal to Ȳ··jk· and the predictions are centered at Ȳ··jk·.
Furthermore, the predominant covariate pattern in a branch determines whether the
average prediction of the (G)LMM is lower or higher compared to the prediction
of the hierarchical credibility model. Within branch D4, for example, the majority
of the observations are categorized into covariate levels that are considered to be
less risky relative to the other levels. Consequently, the average prediction of the
(G)LMM is lower than the prediction of the hierarchical credibility model.

2.3.7 Assessing the predictive performance

We assess the predictive performance of the pricing model on the test set, which
contains damage rates of the individual companies i in the most recent year available.
The empirical distribution of the damage rates Yijkt of the individual companies in
the test set is shown in Figure 2.12. Panel (a) contains all Yijkt’s present in the test
set and panel (b) shows the empirical distribution of the log transformed Yijkt for
Yijkt > 0. The empirical distribution of the Yijkt in the test set is similar to the one
observed when using all available data (Figure 2.2).
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Figure 2.10: Distribution and weighted averages of Yhijkt and Ŷhijkt for a selected set of tariff classes. Both Yhijkt and Ŷhijkt are
multiplied with a constant to preserve the confidentiality of the data.
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Figure 2.11: The distribution and weighted averages of Yhijkt and Ŷhijkt for branch D4 in industry D and for branch P2 in industry
P are shown on the left. The bar plots and map on the right depict the composition of the covariate levels in these
branches. Both Yhijkt and Ŷhijkt are multiplied with a constant to preserve the confidentiality of the data.
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Performance measures. To assess the performance of the models, we predict
the damage rates in the test set and evaluate the model predictions using the Lorenz
curve (Lorenz, 1905), Gini-index (Gini, 1921) and loss ratio. The Lorenz-curve and
Gini-index are considered to be appropriate tools to compare competing pricing
models (Denuit, Sznajder and Trufin, 2019) and assess how well the models are able
to differentiate between low- and high-risk companies. Conversely, the loss ratio
gives an indication of the overall accuracy of the model predictions.

The Lorenz curve plots the cumulative percentage of the predicted damage
rates against the cumulative proportion of damage rates, with the latter sorted
by the predicted damage rates from high to low. An ideal Lorenz curve situates
itself in the upper-left corner and indicates that it perfectly distinguishes high-risk
companies from low-risk companies. The Gini-index is defined as the ratio of the
area between the Lorenz curve and the line of equality (A) over the total area
between the upper-left corner and the line of equality (= 0.5)

G =
A

0.5
. (2.36)

For a perfect model, we obtain the maximum theoretical value of G = 1. To compute
the loss ratio, the total damage on the test set is computed together with the
predicted damage by each of the models by transforming the individual predictions
Ŷijkt as follows (see equation (2.1))

Ẑijkt = Ŷijkt wijkt. (2.37)

When we denote the total capped claim amount as Ztot
t =

∑
i,j,k Zijkt and the

total predicted claim amount as Ẑtot
t =

∑
i,j,k Ẑijkt, the loss ratio is computed as

Ztot
t /Ẑtot

t . Next to these performance measures, we also inspect the difference in
technical premium between the (G)LMMs and the hierarchical credibility model by
calculating the relative difference Rijkt

Rijkt =
ŶM
ijkt − Ŷ J

ijkt

Ŷ J
ijkt

(2.38)

where ŶM
ijkt denotes the predicted pure premium by the (G)LMMs and Ŷ J

ijkt the
predicted pure premium by the hierarchical credibility model, which serves as the
benchmark model. This allows us to identify both overpriced and underpriced
policies. Compared to the hierarchically credibility model, policies are currently
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overpriced when Rijkt < 0 and can potentially be lost to competitors. Conversely,
Rijkt > 0 indicates that the policy is underpriced compared to the hierarchical
credibility model and this necessitates appropriate loss control measures to prevent
future financial losses.

Figure 2.12: Empirical distribution of the damage rates Yijkt of the individual companies
in the test set.

Out-of-sample performance. Table 2.3 summarizes the out-of-sample perfor-
mance of the models on the test set. For both the LMM and Tweedie GLMM, the
Gini-index increases when company-specific risk factors are included. Consequently,
by adding company-specific risk factors we are better able to distinguish high- from
low-risk companies compared to when we do not include these in the model. Further,
in both the LMMs and Tweedie GLMMs the model performance decreases when
we add external covariates. In addition, the loss ratio of the internal and external
covariates LMM is higher than the loss ratio of the internal covariates only LMM.
When the external covariate BFxijkt is added to the internal covariates only Tweedie
GLMM, the loss ratio shows a slight improvement. Comparing the internal covariates
only LMM and internal covariates only Tweedie GLMM, we see that the predictive
performance of the Tweedie model is better. The Gini-index is higher and the
loss ratio is closer to one, indicating that the Tweedie GLMM is better able to
differentiate between low- and high-risk companies and results in a more accurate
estimation of the total damage. In addition, the loss ratio of the internal covariates
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only Tweedie GLMM is lower than the loss ratio of the hierarchical credibility model.

Table 2.3: Comparison predictive performance on the test set.

Model Distribution Variable set Gini-index Loss ratio
Jewell 0.592 1.009
LMM Gaussian Intercept only 0.591 1.009

Internal covariates 0.653 1.013
Internal + external covariates 0.644 1.032

GLMM Tweedie Intercept only 0.607 1.010
Internal covariates 0.660 1.007
Internal + external covariates 0.650 1.006

Figure 2.13: Lorenz curves.

Figure 2.13 shows the Lorenz curves of the different models. The hierarchical
credibility model has the lowest performance and the internal covariates only Tweedie
GLMM the best performance. For all models the Lorenz curve is close to the diagonal
line for observations that are considered to be high-risk. This indicates that the
models experience difficulties with accurately ordering companies characterized by
high Ŷijkt’s. Conversely, when the predicted risk decreases, the ordering of the
companies gets more accurate as the Lorenz curves are further removed from the
diagonal line. Consequently, all models are better able to differentiate high- from
low-risk companies that have medium to low predicted damage rates.
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Figure 2.14 depicts the relative premium differences. The difference is negligible
when using the intercept-only LMM, which is due to the equivalence between the
intercept-only LMM and Jewell model. Larger differences are seen in the Ŷijkt’s
when using the Tweedie intercept-only GLMM which is caused by larger differences
in the random effect estimates. When adding company-specific risk factors to the
LMM and Tweedie GLMM, the majority of the companies see a decrease in the
expected pure premium. Here, the density is larger for Rijkt < 0 indicating that
ŶM
ijkt < Ŷ J

ijkt. In addition, for most companies that see an increase in the expected
pure premium when company-specific risk factors are added, this will be a 50%
increase of the pure premium at most and this will be more than 50% for only a few
companies.

2.4 Conclusions

In this chapter, we show how random effects models can be used to construct a data-
driven insurance pricing model when working with hierarchically structured data
supplemented by internal and external contract-specific risk factors. We examine
several random effects models previously proposed within the actuarial literature,
such as the hierarchical credibility model of Jewell (1975), the combination of a
GLM with the hierarchical credibility model (Ohlsson, 2008) and mixed models.
We examine and compare the performance of these random effects models using
a workers’ compensation insurance portfolio from a Belgian insurer. In addition,
we assess the effect of the distributional assumption of the response as well as the
added value of contract-specific risk factors derived from an external data source.

The random effects specification allows us to efficiently estimate and quantify the
effect of the different hierarchical MLF levels. Further, incorporating contract-specific
information in the model results in an improved predictive performance. With regard
to the estimation methods, we find that Ohlsson’s iterative GLMC algorithm is
ideal in combination with (exhaustive) variable selection methods. Its simplicity
and computational efficiency allows for a quick estimation of the parameters. In
addition, the parameter estimates can be used as starting values when fitting
GLMMs. The GLMMs are computationally heavy and are prone to convergence
issues. Providing appropriate starting values drastically speeds up the GLMM
algorithm and frequently helps to overcome convergence issues. Given their well-
developed statistical framework, which allows for statistical inference, the GLMMs
are well suited to examine the model and can be used as a final estimation step to
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Figure 2.14: Relative premium differences on the test set.
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obtain accurate estimates. With regard to the distributional assumptions, the results
indicate that the Gaussian distribution is not ideal in combination with company-
specific covariates. Due to the presence of zero valued claims and the symmetric
nature of the Gaussian distribution, some companies obtain a negative predicted
damage rate. Conversely, the Tweedie distribution is especially suited for modeling
and predicting damage rates. As previously stated by Jørgensen and Souza (1994),
the Tweedie distribution handles zero valued observations in a natural, satisfactory
way. Moreover, compared to the LMMs, the Tweedie GLMMs are better able to
differentiate between low- and high-risk companies and result in a more accurate
estimation of the total claim amount in the test set. In addition, including company-
specific covariates allows for more and better differentiation between companies and
the Tweedie model is possibly better able to detect groups characterized by large
damage rates. Adding external company-specific covariates to the internal covariates
only model, however, did not result in significant improvements.

The absence of an added value of incorporating external data may be caused by
limiting ourselves to one specific external data source. Future research can examine
whether this generalizes to other data sets and examine the potential predictive value
of other external data sources. Further, we limit ourselves to regression-type random
effects models. The theoretical framework can be extended to include random effects
machine-learning methods as well, such as the RE-EM tree of Sela and Simonoff
(2012). Given the promising results of machine-learning methods within actuarial
applications, it may prove to be worthwhile to examine whether this generalizes to
hierarchically structured data as well.



Chapter 3

On clustering levels of a
hierarchical categorical risk
factor

Handling nominal covariates with a large number of categories is challenging for both
statistical and machine learning techniques. This problem is further exacerbated
when the nominal variable has a hierarchical structure. The industry code in a
workers’ compensation insurance product is a prime example hereof. We commonly
rely on methods such as the random effects approach (Campo and Antonio, 2023) to
incorporate these covariates in a predictive model. Nonetheless, in certain situations,
even the random effects approach may encounter estimation problems. We propose
the data-driven Partitioning Hierarchical Risk-factors Adaptive Top-down (PHiRAT)
algorithm to reduce the hierarchically structured risk factor to its essence, by
grouping similar categories at each level of the hierarchy. We work top-down and
engineer several features to characterize the profile of the categories at a specific
level in the hierarchy. In our workers’ compensation case study, we characterize the
risk profile of an industry via its observed damage rates and claim frequencies. In
addition, we use embeddings (Mikolov et al., 2013; Cer et al., 2018) to encode the
textual description of the economic activity of the insured company. These features
are then used as input in a clustering algorithm to group similar categories. We
show that our method substantially reduces the number of categories and results in
a grouping that is generalizable to out-of-sample data. Moreover, when estimating
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the technical premium of the insurance product under study as a function of the
clustered hierarchical risk factor, we obtain a better differentiation between high-risk
and low-risk companies.

This chapter is based on the paper by Bavo D.C. Campo and Katrien Antonio
titled "On clustering levels of a hierarchical categorical risk factor", which has been
accepted for publication in Annals of Actuarial Science on the 14th of November,
2023 and which is currently in press. The preprint is available at arXiv: https:

// arxiv. org/ abs/ 2304. 09046 .

3.1 Introduction

At the heart of a risk-based insurance pricing model is a set of risk factors that
are predictive of the loss cost. To model the relation between the risk factors
and the loss cost, actuaries rely on statistical and machine learning techniques.
Both approaches are able to handle different types of risk factors (i.e. nominal,
ordinal, geographical or continuous). In this contribution we put focus on challenges
imposed by nominal variables with a hierarchical structure. Such variables may
cause estimation problems, due to an exceedingly large number of categories and a
limited number of observations for some of the categories. Using default methods to
handle these, such as dummy encoding, may result in unreliable parameter estimates
in generalized linear models (GLMs) and may cause machine learning methods
to become computationally intractable. We refer to this type of risk factor as a
hierarchical multi-level factor (MLF) (Ohlsson and Johansson, 2010) or a hierarchical
high-cardinality attribute (Micci-Barreca, 2001; Pargent et al., 2022). Examples of
such a nominal variable include provinces and municipalities within provinces, or
vehicle brands and models within brands. Within workers’ compensation insurance,
a typical example is the hierarchical MLF derived from the numerical codes of the
NACE system. The NACE system is a hierarchical classification system used in
the European Union to group similar companies based on their economic activity
(European Commission and Eurostat, 2017). A similar example is the Australian
and New Zealand Standard Industrial Classification (ANZSIC) system (Australian
Bureau of Statistics and New Zealand, 2006), which is closely related to the NACE
system (European Commission and Eurostat, 2017).

In predictive modelling, such risk factors are potentially a great source of infor-
mation. In workers’ compensation insurance, certain industries (e.g., manufacturing,
construction) and occupations (e.g., labouring, roofer) are associated with an in-

https://arxiv.org/abs/2304.09046
https://arxiv.org/abs/2304.09046
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creased risk of filing claims (Walters et al., 2010; Holizki et al., 2008; Wurzelbacher
et al., 2021). Furthermore, companies operating in the same industry are exposed
to similar risks. This creates a dependency among companies active in the same in-
dustry and heterogeneity between companies working in different industries (Campo
and Antonio, 2023). Industry classification systems, such as the NACE and ANSZIC,
allow to group companies based on their economic activity at varying levels of
granularity. Most industry classification systems are hierarchical classifications that
work top-down. The classification of a company starts at the highest level in the
hierarchy and, from here, proceeds successively to lower levels in the hierarchy. At
the top level of the hierarchy, the categories are broad and general, covering a wide
range of economic activities. As we move down the hierarchy, the categories are
broken down into increasingly specific subcategories that encompass more detailed
economic activities. Further, industry classification systems typically provide a
textual description for the categories at all levels in the hierarchy. This description
explains why companies are grouped in the same category and can be used to judge
the similarity of activities among categories.

To incorporate the hierarchical MLF in a predictive model, we can opt for the
hierarchical random effects approach (Campo and Antonio, 2023). Here, we specify
a random effect at each level in the hierarchy. The random effects capture the
unobservable characteristics of the categories at the different levels in the hierarchy.
Moreover, random effects models account for the within-category dependency and
between-category heterogeneity. To estimate a random effects model, we can either
use the hierarchical credibility model (Jewell, 1975), Ohlsson’s combination of the
hierarchical credibility model with a GLM (Ohlsson, 2008) or the mixed models
framework (Molenberghs and Verbeke, 2005). These estimation procedures rely
on the estimation of variance parameters and we require these estimates to be
non-negative (Molenberghs and Verbeke, 2011; Oliveira et al., 2017). In some cases,
however, we obtain negative variance estimates and this can occur when there is low
variability (Oliveira et al., 2017) or when the hierarchical structure of the MLF is
misspecified (Pryseley et al., 2011). In these situations, the estimation procedure
yields nonsensical results. With the random effects approach we implicitly assume
that the risk profiles differ between the different categories (Tutz and Oelker, 2017).
However, it is not an unreasonable assumption that certain categories have an
identical effect on the response and that these should be grouped into homogeneous
clusters. Decreasing the total number of categories leads to sparser models that are
easier to interpret and less likely to experience estimation problems or to overfit.
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Additionally, individual categories will have more observations, leading to more
precise estimates of their effect on the response.

To group data into homogeneous clusters, we typically rely on clustering tech-
niques. These techniques partition the data points into clusters such that observations
within the same cluster are more similar compared to observations belonging to
other clusters (Hastie et al., 2009, Chapter 14). Within actuarial sciences, clustering
methods recently appeared in a variety of applications. In motor insurance, for
example, clustering algorithms are employed to group driving styles of policyhold-
ers (Wüthrich, 2017; Zhu and Wüthrich, 2021), to construct tariff classes in an
unsupervised way (Yeo et al., 2001; Wang and Keogh, 2008) and to bin continuous
or spatial risk factors (Henckaerts et al., 2018). Also in health insurance we find
several examples. Rosenberg and Zhong (2022) used clustering techniques to identify
high-cost health care utilizers who are responsible for a substantial amount of health
expenditures.

Our aim is to use clustering algorithms in workers’ compensation insurance
pricing, to group categories of the hierarchical MLF that are similar in riskiness
and economic activity. To characterize the riskiness, we rely on risk statistics such
as the average damage rate and the expected claim frequency. Moreover, we also
use the textual description of the categories to obtain information on the economic
activity. The risk statistics are expressed as numerical values, whereas the textual
descriptions are presented as nominal categories. Both types of features are then used
as input in a clustering algorithm to group similar categories of the hierarchical MLF.
To create clusters, most algorithms rely on distance or (dis)similarity metrics to
quantify the degree of relatedness between observations in the feature space (Hastie
et al., 2009; Foss et al., 2019). These metrics, however, are different for numeric and
nominal features which makes it challenging to cluster mixed-type data (Cheung
and Jia, 2013; Foss et al., 2019; Ahmad et al., 2019). One approach to tackle this
problem is to convert the nominal to numeric features. Hereto, we commonly employ
dummy encoding (Hsu, 2006; Cheung and Jia, 2013; Ahmad et al., 2019; Foss et al.,
2019). This encoding creates binary variables that represent category membership.
Hereby, it results in a loss of information when the categories have textual labels.
Labels provide meaning to categories and reflect the degree of similarity between
different categories. A more suitable encoding is obtained using embeddings, a
technique developed within natural language processing (NLP). Embeddings are
vector representations of textual data that capture the semantic information (Verma
et al., 2021; Schomacker and Tropmann-Frick, 2021; Ferrario and Naegelin, 2020).
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In the actuarial literature, Lee et al. (2020) show how embeddings can be used to
incorporate textual data into insurance claims modelling. Xu et al. (2022) create
embedding based risk factors that are used as features in a claim severity model.
Zappa et al. (2021) used embeddings to create risk factors that predict the severity
of injuries in road accidents.

Research on grouping categories of hierarchical MLFs is limited. Most of the
research is focused on nominal variables that do not have a hierarchical structure.
For example, the Generalized Fused Lasso (GFL) (Höfling et al., 2010; Gertheiss and
Tutz, 2010; Oelker et al., 2014) groups MLF categories within a regularized regression
framework. Here, categories are merged when there is a small difference between the
regression coefficients. Nonetheless, the GFL does not scale well to high-cardinality
features since the number of estimated coefficient differences grows exponentially
with the number of categories. Another example to fuse non-hierarchically structured
nominal variables is the method of Carrizosa et al. (2021). Here, the authors first
specify the order of the categories and the number of clusters. Next, to create the
prespecified number of clusters they group consecutive categories. For a specific
number of clusters, multiple solutions exist and the solution with the highest out-
of-sample accuracy is preferred. The disadvantages of this approach are three-fold.
First, it only merges neighbouring categories. Second, there is no procedure to select
the optimal number of groups and third, the procedure can not immediately be
applied to hierarchical MLFs. To the best of our knowledge, the method described
in Carrizosa et al. (2022) is the only approach that puts focus on reducing the
number of categories of a hierarchical MLF. Here, the authors propose a bottom-up
clustering strategy. This technique begins by considering the categories at the lowest
level in the hierarchy. Hereafter, starting from the categories at the lowest level in
the hierarchy, they consecutively merge categories at the lowest level into broader
categories at higher levels in the hierarchy. As such, categories that are nested within
the same category at a higher level in the hierarchy are grouped. Notwithstanding,
their proposed optimization strategy is only suited for linear regression models.
Further, it is not suitable when we want to maintain the levels in the hierarchical
structure. Certain granular categories are replaced the broader categories they are
nested in. Hence, it is possible that the optimal solution produces a hierarchical
structure with a different depth in its representation.

This chapter contributes to the existing literature in the following ways. Firstly,
we present a data-driven approach to reduce an existing granular hierarchical
structure to its essence, by grouping similar categories at every level in the hierarchy.
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We devise a top-down procedure, where we start at the top level, to preserve the
hierarchical structure. At a specific level in the hierarchy, we engineer several
features to characterize the risk profile of each category. In a case-study with a
workers’ compensation insurance product, we use predicted random effects obtained
with a generalized linear mixed model for damage rates on the one hand and claim
frequencies on the other hand. To extract the textual information contained in
the category description, we use embeddings. Next, we use these features as input
in a clustering algorithm to group similar categories into clusters. Hereafter, we
proceed to grouping the categories at the next hierarchical level. The procedure
stops once we grouped the categories at the lowest level in the hierarchy. Secondly,
we provide a concise overview of important aspects and algorithms in cluster analysis.
Furthermore, we demonstrate that the clustering algorithm and evaluation criterion
affect the clustering solution. Thirdly, we show that embeddings can be used to group
similar categories of a nominal variable. Contrary to Lee et al. (2020); Zappa et al.
(2021); Xu et al. (2022), we do not employ embeddings to create new risk factors in
a pricing model. Instead, we use embeddings to extract the textual information of
category labels and to cluster categories based on their semantic similarities.

The remainder of this chapter is structured as follows. In Section 3.2, we use a
workers’ compensation insurance product as a motivating example with the NACE
code as hierarchical MLF. We illustrate the structure of this type of data set,
which information is typically available and we explain how to engineer features
that characterize the risk profile of the categories. In Section 3.3, we define a
top-down procedure to cluster similar categories at a specific level in the hierarchy
and we discuss several aspects of clustering techniques. The results of applying
our procedure to reduce the hierarchical structure to its essence are discussed in
Section 3.4. Moreover, in this section we also compare the use of the original and the
reduced structure in a technical pricing model for workers’ compensation insurance.
Section 4.5 concludes the article.

3.2 Feature engineering for industrial activities in a

workers’ compensation insurance product

To illustrate the importance of hierarchical MLFs in insurance pricing, a workers’
compensation insurance product is a particularly suitable example. This insurance
product compensates employees for lost wages and medical expenses resulting from
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job-related injury (see Campo and Antonio (2023) for more information). In this
type of insurance, we generally work with an industrial classification system to group
companies based on their economic activity. Hereto, we demonstrate and discuss
the NACE classification system in Section 3.2.1. We explain the typical structure
of a workers’ compensation insurance data set and discuss which information is
available. In Section 3.2.2 we show how we use this information to engineer features
that characterize the riskiness and economic activity of categories at a specific level
in the hierarchy.

3.2.1 A hierarchical classification scheme for industrial activ-
ities

In a workers’ compensation insurance data set, it is common to work with an
industrial classification system. Within the European Union, a wide range of
organizations (e.g., national statistical institutes, business and trade associations,
insurance companies and European national central banks (European Commission
and Eurostat, 2017; Stassen et al., 2017; European Central Bank, 2021)) work with
the NACE system (European Commission and Eurostat, 2017). This is a hierarchical
classification system to group companies based on their economic activity. Each
company is assigned a four-digit numerical code, which is used to identify the
categories at different levels in the hierarchy. The NACE system works top-down,
starts at the highest level in the hierarchy and then proceeds to the lower levels.
In this chapter, we work with NACE Rev. 1 (Statistical Office of the European
Communities, 1996), which has five hierarchical levels (in descending order): section,
subsection, division, group and class. Most member states of the EU have a
national version which follows the same structural and hierarchical framework as the
NACE. In Belgium, the national version of NACE Rev. 1 is called the NACE-Bel
(2003) (FOD Economie, 2004) and adds one more level to the hierarchy by adding a
fifth digit. We refer to this level as subclass. Insurance companies may choose to
add a sixth digit to include yet another level, allowing for even more differentiation
between companies. This level in the hierarchy is referred to as tariff group and
we denote the insurance company’s version as NACE-Ins.

To illustrate how the NACE system works, suppose that we have a company
that manufactures beer. Using NACE Rev. 1 (Statistical Office of the European
Communities, 1996), this company gets the code 1596. At the top level section, the
first two digits (i.e. 15) classify this company into manufacturing (see Figure 3.1).
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Figure 3.1: Illustration of the NACE system for a company that manufactures beer. This
economic activity is encoded as 1596 in NACE Rev. 1. Based on the NACE
code, we assign the company to a certain category at a specific level in the
hierarchy. For the purpose of this illustration, we shortened the textual
description of the categories.
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This category contains all NACE codes that start with numbers 15 to 37. Following,
the first two digits categorize the company into manufacture of food products,
beverages and tobacco at the subsection level, which is nested within the section

manufacturing. The category manufacture of food products, beverages and tobacco
includes all NACE codes starting with numbers 15 and 16. At the third level in
the hierarchy - division - the company is classified into 15 - manufacture of food
products and beverages. At the fourth level group, we use the first three digits to
classify the company in 159 - manufacture of beverages. Finally, at the fifth and
lowest level class, the four digit code assigns the company to 1596 - manufacture
of beer.

This example also shows that, at all levels in the hierarchy, the NACE provides
a textual description for each category. This text briefly describes the economic
activity of a specific category, thereby explaining why certain companies are grouped.
We illustrate this in Table 3.1. Herein, we show the textual information that is
available for companies with NACE codes 1591, 1596, and 1598. This table displays
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a separate column for every level in the hierarchy. The corresponding value indicates
which category the codes belong to. At the section, subsection, division and
group level, the NACE codes 1591, 1596, and 1598 are grouped in the same categories
(i.e. 15-37, 15-16, 15 and 159 respectively). At the class level, each of the codes
is assigned to a different category. The column description presents the textual
information for each corresponding category. For example, at the division level,
15 has the description manufacture of food products and beverages.

Table 3.1: Illustration of the textual information for NACE codes 1591, 1596, and 1598.

Section Subsection Division Group Class Description
15-37 Manufacturing

15-16 Manufacture of food products, beverages
and tobacco

15 Manufacture of food products and
beverages

159 Manufacture of beverages
1591 Manufacture of distilled potable

alcoholic beverages
. . . . . .
1596 Manufacture of beer
. . . . . .
1598 Production of mineral waters and soft

drinks

The textual description of other categories in the NACE system is similar to the
example in Table 3.1. Overall, the description is brief and consists of a single word
or phrase. Further, categories at higher levels in the hierarchy have a more concise
description using overarching terms such as manufacturing. Conversely, at lower
levels in the hierarchy, the descriptions are typically more detailed and extensive
(e.g. manufacture of distilled potable alcoholic beverages and production of mineral
waters and soft drinks).

Table 3.2: Number of unique categories per level in the hierarchy of the NACE-Bel (2003).

Section Subsection Division Group Class Subclass
Number of categories:

NACE-Bel (2003) 17 31 62 224 515 800
Portfolio 17 30 56 197 398 581

3.2.1.1 Selecting levels in the hierarchy

When working with NACE-Ins, we have seven levels in the hierarchy: section,
subsection, division, group, class, subclass and tariff group. This results
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in an immense amount of categories, some of which contain few to no observations.
In this chapter, we work with a NACE-Ins that is based on the NACE-Bel (2003)
(FOD Economie, 2004). Table 3.2 shows the unique number of categories at each
level in the hierarchy. The first row indicates how many categories there are at each
level in the NACE-Bel (2003) classification system. The second row specifies how
many categories are present at each level in our portfolio. Due to the confidentiality
of the data, we do not disclose the number of categories at the tariff group level.

The more levels in the hierarchy, the more complex a tariff model becomes that
incorporates this hierarchical MLF in its full granularity. Consequently, in practice,
the NACE-Ins may not be used in its entirety. In our database, we have access
to a hierarchical MLF designed by the insurance company that offers the workers’
compensation insurance product. This structure has been created by merging similar
NACE-Ins codes, based on expert judgment. This hierarchical MLF has two levels
in the hierarchy, referred to as industry and branch in Campo and Antonio (2023).
In this chapter, we illustrate how such a hierarchical MLF can be constructed using
our proposed data-driven approach, as an alternative for the manual grouping by
experts. To demonstrate our method we put focus on two selected levels in the
hierarchy of NACE-Ins. This is merely for illustration purposes. Our approach is
applicable with any number of levels in the hierarchy.

To align with the insurance company’s hierarchical MLF, we select the subsection
and tariff group level (see Figure 3.1) and aim to reduce the hierarchical structure
consisting of these levels. We use l = (1, . . . , L) to index the levels in the hierar-
chy, where L denotes the total number of levels. In our illustration, subsection
corresponds to the highest level l = 1 in the hierarchy. At l = 1, we index the
categories using j = (1, . . . , J) where J denotes the total number of categories.
The tariff group level represents the second level in the hierarchy. Here, we use
jk = (j1, . . . , jKj) to index the categories nested within subsection j. We refer to
k as the child category that is nested within parent category j and Kj denotes the
total number of categories nested within j. Due to confidentiality of the classification
system and data, no comparisons between the company’s hierarchical MLF and our
proposed clustering solutions will be provided in this chapter.

3.2.2 Feature engineering

We start at the highest level in the hierarchy, subsection, and engineer a set of
features that capture the riskiness and the economic activity of the categories. Using
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these features, the clustering algorithms can identify and group similar categories at
the subsection level. Hereafter, we proceed to the tariff group level and engineer
the same type of features for the categories at this level in the hierarchy.

We assume that we have a workers’ compensation insurance data set with
historical, claim related information of the companies in our portfolio. For each
company i, we have the NACE-Ins code in year t. We use this code to categorize
company i in subsection j and tariff group k. In our database, we have the
total claim amount Zijkt, the number of claims Nijkt and the salary mass wijkt for
year t and company i, a member of subsection j and tariff group k.

3.2.2.1 Riskiness

We express the riskiness of the subsection and tariff group in terms of their
damage rate and their claim frequency. The higher the damage rate and claim
frequency, the riskier the category. For an individual company i, the damage rate in
year t is calculated as

Yijkt =
Zijkt

wijkt
. (3.1)

To capture the subsection- and tariff group-specific effect on the damage rate
and claim frequency, we use random effects models (Campo and Antonio, 2023). In
this approach, the prediction of the category-specific random effect is dependent
on how much information is available. The random effect predictions are shrunk
towards zero for categories with high variability, a low number of observations or
when the variability between categories is small (Breslow and Clayton, 1993; Gelman
and Hill, 2017; Brown and Prescott, 2006; Pinheiro et al., 2009).

We start at the subsection level and model the damage rate as a function of
the subsection using a (Tweedie generalized) linear mixed model

g(E[Yijkt|Ud
j ]) = µd + Ud

j . (3.2)

Here, µd denotes the intercept and Ud
j the random effect of subsection j. We

include the salary mass wijkt as weight. As discussed in Campo and Antonio
(2023), we typically model the damage rate by assuming either a Gaussian or
Tweedie distribution for the response. The Ud

j ’s represent the between-subsection
variability and enable us to discern between low- and high-risk profiles. The higher
Ud
j , the higher the expected damage rate for subsection j and vice versa. To

engineer the first feature, we extract the Ûd
j ’s from the fitted damage rate model
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(3.2). Hereafter, we fit a Poisson generalized linear mixed model

g(E[Nijkt|Uf
j ]) = µf + Uf

j + log(wijkt) (3.3)

to assess the subsection’s effect on the claim frequency. µf denotes the intercept
and Uf

j the random effect of subsection j. We include the log of the salary mass
as an offset variable. We extract the Ûf

j ’s from the fitted claim frequency model
(3.3) to engineer the second feature. The Ûd

j ’s and Ûf
j ’s will be combined with

the features representing the economic activity to group similar categories at the
subsection level. We index the resulting grouped categories at the subsection

level using j′ = (1, . . . , J ′).

Next, we engineer the features at the tariff group level. To capture the tariff
group-specific effect on the damage rate, we fit a (Tweedie generalized) linear mixed
model

g(E[Yij′kt|Ud
j′ , U

d
j′k]) = µd + Ud

j′ + Ud
j′k (3.4)

where the random effect Ud
j′k represents the tariff group-specific deviation from

µd + Ud
j′ . As before, we include the wij′kt as weight. The Ud

j′k’s reflect the between-
tariff group variability, after having accounted for the variability between the
grouped subsections. Ud

j′k quantifies the tariff group-specific effect of tariff
group k, in addition to the (grouped) subsection-specific effect Ud

j′ , on the expected
damage rate. To characterize the riskiness of the categories at the tariff group

level in terms of the claim frequency, we extend (3.3) to

g(E[Nij′kt|Uf
j′ , U

f
j′k]) = µf + Uf

j′ + Uf
j′k + log(wij′kt). (3.5)

In this model, Uf
j′k represents the tariff group-specific deviation from µd+Uf

j′ . We
extract the Ûd

j′k’s and Ûf
j′k’s from the fitted damage rate (3.4) and claim frequency

model (3.5) to engineer the features at the tariff group level.

We do not include any additional covariates in the random effects models (see
equations Eqs. (3.2)–(3.5)) to fully capture the variability that is due to heterogeneity
between categories. If, however, there are covariates available at the subsection

or tariff group level, these can be incorporated in the model specification in
equations Eqs. (3.2)–(3.5) and used further on in the construction of the feature
matrix at the subsection or tariff group level.

The approach to construct features based on the random effect predictions is
closely related to target encoding (Micci-Barreca, 2001). In target encoding, the
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numerical value of a category is the weighted average of the category-specific average
of the response variable and the response variable’s average at the higher levels
in the hierarchy. Micci-Barreca (2001) presents various approaches to determine
the weights. A linear mixed model can be seen as a special case of the weights
specification as it has a closed-form solution for the random effects predictions. For
most GLMMs, however, there is no available analytical expression. In these cases,
there is no strict equivalence with target encoding.

3.2.2.2 Economic activity

Next, we require a feature that expresses similarity in economic activity. Given that
industry codes of similar activities tend to be closer, we might rely on their numerical
values. The closer the numerical value, the more overlap there will be between
categories at a specific level in the hierarchy. Hence, we could use the four-digit
NACE codes as discussed in Section 3.2.1. Notwithstanding, not all categories can
readily be converted to a numerical format. At the higher levels in the hierarchy
we have categories that encompass various NACE codes, such as manufacture of
pulp, paper and paper products: publishing and printing at the subsection level.
This specific subsection consists of all NACE codes that start with numbers 21 to
22. To obtain a numerical representation of this subsection we can, for example,
take the mean of these NACE codes. We then obtain the encodings as illustrated
in Table 3.3. The column subsection indicates which category the NACE codes
are appointed to at the subsection level and the column description gives the
textual description of this category. The examples in this table highlight two issues
with this approach. Firstly, the numerical distance may not reflect the similarity
between economic activities. The difference between manufacture of wood and wood
products and manufacture of pulp, paper and paper products: publishing and printing
is the same as the difference between manufacture of pulp, paper and paper products:
publishing and printing and manufacture of coke, refined petroleum products and
nuclear fuel. Hence, using this encoding would imply that manufacture of pulp,
paper and paper products: publishing and printing is as similar to manufacture of
wood and wood products as it is to manufacture of coke, refined petroleum products
and nuclear fuel. Secondly, there might be gaps between consecutive codes in the
classification system. In NACE Rev. 1, for example, there are no codes that start
with 43 or 44. Gaps such as these can be present at various levels in the hierarchy
and generally exist to allow for future additional categories (European Commission
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and Eurostat, 2017).

Table 3.3: Illustration of a possible encoding for the categories at the subsection level
of the NACE Rev. 1.

Subsection Encoding Description
. . . . . . . . .
20 20 Manufacture of wood and wood products

21-22 21.5 Manufacture of pulp, paper and paper products: publishing
and printing

23 23 Manufacture of coke, refined petroleum products and nuclear
fuel

24 24 Manufacture of chemicals, chemical products and mad-made
fibres

. . . . . . . . .
36-37 36.5 Manufacturing not elsewhere classified
40-41 40.5 Electricity, gas and water supply

45 45 Construction
. . . . . . . . .

Alternatively, we use embeddings to encode the economic activity of a category
(Mikolov et al., 2013). Embeddings map the textual information to a continuous
vector. Hence, we use embeddings to map the description for subsection j to a
vector ej = (ej1, ej2, . . . , ejE). For tariff group k within subsection j, we denote
the embedding vector as ejk = (ejk1, ejk2, . . . , ejkE). Here, E is the dimension of
the vector which depends on the encoder. The textual information from similar
categories is expected to lie closer in the vector space and this enables us to group
semantically similar texts (i.e. texts that are similar in meaning).

Consequently, we group categories with comparable economic activities based
on the embeddings of their textual labels. To engineer these embeddings, we may
train an encoder on a large corpus of text. Within the area of Natural Language
Processing (NLP), researchers commonly use neural networks (NN) as encoders.
By training the NN on large amounts of unstructured text data, it is able to learn
high-quality vector representations (Mikolov et al., 2013). In addition, the encoders
can be trained to either learn vector representations for words, phrases or paragraphs.
The disadvantage of these models is that they generally need a large amount of
data (Arora et al., 2020; Troxler and Schelldorfer, 2022). Furthermore, words that
do not appear often are poorly represented (Luong et al., 2013). We therefore
prefer pre-trained encoders, which are trained on large text corpuses, to encode the
textual description of a subsection. For example, the universal sentence encoder
of Cer et al. (2018) is trained on Wikipedia, web news, web question-answer pages
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and discussion forums. This encoder is publicly available via TensorFlow Hub
(https://tfhub.dev/).

3.2.2.3 Feature matrix

After engineering the features at level l in the hierarchy, we assemble them into
a feature matrix Fl. Table 3.4 shows an example of the feature matrix F1 at
the subsection level. Herein, 1Û

d
= (Ûd

1 , . . . , Û
d
j , . . . , Û

d
J ) represents the vec-

tor with the predicted random effects from the fitted damage rate GLMM (see
(3.2)). 1Û

f
= (Ûf

1 , . . . , Û
f
j , . . . , Û

f
J ) denotes the vector with the predicted ran-

dom effects of the claim frequency GLMM (see (3.3)) and we use the notation
e⋆1 = (e11, . . . , ej1, . . . , eJ1) for the embeddings. Each row in F1 corresponds to a
numerical representation of a specific subsection j, with j = (1, . . . , J). We denote
the feature vector of subsection j by xj = (Ûd

j , Û
f
j , ej).

Table 3.4: Feature matrix F1, consisting of the engineered features for the categories
at l = 1 in the hierarchy. The columns 1Û

d
and 1Û

f
contain the predicted

random effects of the damage rate and claim frequency GLMM, respectively.
The embedding vector is represented by the values in columns e⋆1, e⋆2, . . . , e⋆E .

Subsection 1Û
d

1Û
f

e⋆1 e⋆2 e⋆3 . . . e⋆E

1 -1.25 -0.25 -2.13 1.25 0.15 . . . -0.05

. . . . . . . . . . . . . . . . . . . . . . . .

J 0.75 0.15 1.79 -2.13 0.5 . . . 1.07

At the tariff group level, we gather the features in F2. An example hereof is
given in Table 3.5. 2Û

d
= (Ûd

11, . . . , Û
d
jk, . . . , Û

d
JKJ

) and 2Û
f
= (Ûf

11, . . . , Û
f
jk, . . . , Û

f
JKJ

)

denote the vectors of the tariff group-specific random effects. To denote the em-
beddings, we use e⋆⋆1 = (e111, . . . , ejk1, . . . , eJKJ1). xjk = (Ûd

jk, Û
f
jk, ejk) denotes

the feature vector of tariff group k, nested within subsection j.

https://tfhub.dev/
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Table 3.5: Feature matrix F2, consisting of the engineered features for the categories at
l = 2 in the hierarchy. The columns 2Û

d
and 2Û

f
contain the predicted random

effects of the damage rate and claim frequency GLMM, respectively. The
embedding vector is represented by the values in columns e⋆⋆1, e⋆⋆2, . . . , e⋆⋆E .

Subsection Tariff group 2Û
d

2Û
f

e⋆⋆1 e⋆⋆2 e⋆⋆3 . . . e⋆⋆E

1 11 -1.55 -0.01 -0.54 1.08 2.12 . . . 0.10
. . . . . . . . . . . . . . . . . . . . . . . . . . .
1 1K1 0.15 0.96 -0.37 -0.26 0.58 . . . -0.99

. . . . . . . . . . . . . . . . . . . . . . . . . . .
j j1 -0.29 -0.41 -0.05 -0.72 0.41 . . . -0.73

. . . . . . . . . . . . . . . . . . . . . . . . . . .
j jKj 0.11 0.26 0.16 0.69 0.87 . . . 1.59

. . . . . . . . . . . . . . . . . . . . . . . . . . .
J J1 0.11 0.26 0.16 0.69 0.87 . . . 1.59

. . . . . . . . . . . . . . . . . . . . . . . . . . .
J JKJ 0.67 -1.74 0.19 0.45 0.5 . . . -0.61

3.3 Clustering levels in a hierarchical categorical

risk factor

3.3.1 Partitioning Hierarchical Risk-factors Adaptive Top-
down

To group similar categories at each level in the hierarchy, we devise the PHi-
RAT algorithm to Partition Hierarchical Risk-factors in an Adaptive Top-down
way, see Algorithm 2. We introduce some additional notation to explain how
PHiRAT works. Jl denotes the set of categories at a specific level l in the hi-
erarchy. Hence, when the total number of levels L = 2, J1 = (1, . . . , J) and
J2 = (11, . . . , 1K1, . . . , j1, . . . , jKj , . . . , J1, . . . , JKJ) as illustrated in Tables 3.4
and 3.5, respectively. We use π(c) = p to indicate that child category c has parent
category p and {c : π(c) = p} denotes the set of all child categories c nested within
parent category p. Fl,{c:π(c)=p} represents the subset of feature matrix Fl, which
contains only those rows of Fl that correspond to the child categories nested in
parent category p. For example, when L = 2, F2,{c:π(c)=j} contains only the rows
corresponding to the (j1, . . . , jKj) child categories of j (see Table 3.5). Further, Kl

denotes the number of clusters at level l in the hierarchy. For l > 1, we extend the
notation to Kl,{c:π(c)=p} to indicate that, at level l in the hierarchy, we group the
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child categories of p into Kl,{c:π(c)=p} clusters. The subscript l indicates at which
level in the hierarchy we are. We use the additional subscript {c : π(c) = p} to
specify that we only consider the set of child categories of parent category p.

PHiRAT works top-down, starting from the highest level (l = 1) and working
its way down to the lowest level (l = L) in the hierarchy (see Algorithm 2). Every
iteration consists of three steps. First, we engineer features for the categories in
Jl. Second, we combine these features in a feature matrix Fl. Third, we employ
clustering techniques to group the categories in Jl using (a subset of) Fl as input.
In most clustering methods, we define a tuning grid and perform a grid search to
determine the optimal number of clusters. Consequently, the minimum value within
the tuning grid sets the lower bound for the number of grouped categories. Further,
the third step differs slightly when l = 1. At l = 1, we use the full feature matrix as
input in the clustering algorithm. Conversely, when l > 1, we loop over the parent
categories in Jl−1 and in every loop, we use a different subset of Fl as input. For
parent category p, we only consider {c : π(c) = p} and use Fl,{c:π(c)=p} as input in
the clustering algorithm. Hereby, we ensure that we only group child categories
nested within parent category p. Further, we remove a specific level l from the
hierarchy if Jl is reduced to Jl−1 (i.e. all child categories, of each parent category
in Jl−1, are merged into a single group). The algorithm stops when the clustering
at level l = L is done.

Algorithm 2: PHiRAT Pseudo-code
for l = 1 to L do

Engineer features that characterize the categories;
Combine the features in a feature matrix Fl;
if l = 1 then

Use a clustering algorithm to group the (1, . . . , J) categories into K1

clusters, with F1 as input;
else

foreach p in Jl−1 do
Use a clustering algorithm to group the {c : π(c) = p} child
categories of parent category p into Kl,{c:π(c)=p} clusters, using
Fl,{c:π(c)=p} as input;

end
end

We visualize how the procedure works in Figure 3.2. In this fictive example, we
focus on the subsection and tariff group level. At the subsection level, there
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Figure 3.2: A fictive example illustrating how the PHiRAT algorithm clusters categories at the subsection and tariff group level.
The textual labels of the categories are shortened for the purpose of this illustration.

(a) Visualization of the hierarchically structured categories at the subsection and tariff group level before clustering. The blue
rectangles depict which categories are grouped when employing the PHiRAT algorithm.
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(b) Visualization of the reduced hierarchical structure after clustering with the PHiRAT algorithm.
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are three unique categories J1 = (45, 80, 85) and at the tariff group level, we have
nine unique categories J2 = (451100, 453100, 454500, 801000, 802100, 803000, 851400,

852000, 853100) (see Figure 3.2(a)). We use the index j = (1, . . . , J) at l = 1. At
l = 2, we use jk = (j1, . . . , jKj) to index the categories nested within j. Using
PHiRAT, we first group the categories 80 and 85 at l = 1. This is depicted in
Figure 3.2(a) by the blue rectangle. Consequently, J1 = (45, {80; 85}) where {80; 85}
denotes that categories 80 and 85 are merged. The grouped categories at l = 1 are
now indexed by j′ = (1, . . . , J ′). Hereafter, the algorithm iterates over the (fused)
categories in J1 and clusters the child categories at l = 2. Within subsection 45,
it groups the categories 453100 and 454500. Within {80; 85}, the clustering results
in three groups of categories: (1) {801000; 802100; 803000}; (2) {851400; 852000}
and (3) 853100. We index the fused categories at l = 2 and nested within j′ using
j′k′ = (j′1, . . . , j′K ′j′). At this point the algorithm stops and Figure 3.2(b) depicts
the clustering solution.

We opt for a top-down approach for several reasons. Firstly, at the highest
level we have more observations available for the categories. The more data, the
more precise the category-specific risk estimates will be. Conversely, categories at
more granular levels have fewer observations, leading to less precise risk estimates.
Secondly, we preserve the original hierarchical structure and maintain the parent-
child relationship between categories at different levels in the hierarchy. Hereby, we
divide the grouping of categories, at a specific level in the hierarchy, into smaller
and more specific separate clustering problems.

Alternatively, it might be interesting to construct a similar algorithm that works
bottom-up and groups child categories that have different parent categories. We
leave this as a topic for future research.

3.3.2 Clustering analysis

To partition the set of categories Jl into homogeneous groups, we rely on clustering
algorithms using (a subset of) Fl as input. At l = 1, for example, we employ
clustering to divide the rows in F1 into K1 homogeneous groups such that categories
in each cluster j′ are more similar to each other compared to categories of other
clusters j′ ̸= j′. In the remainder of this section, we continue with the example of
grouping the (1, . . . , J) categories at l = 1 to explain and illustrate the key concepts
of the clustering methods used in this chapter.

Most clustering algorithms rely on distance or (dis)similarity metrics to quantify
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the proximity between observations. Table 3.6 gives an overview of a selected
set of (dis)similarity measures relevant to this chapter. A dissimilarity measure
d(xj ,x j) expresses how different two observations xj and x j are (the higher the
value, the more they differ). Dissimilarity metrics that satisfy the triangle inequality
d(xj ,x j) ⩽ d(xj ,xz) + d(xz,x j) for any z (Schubert, 2021; Phillips, 2021) are
considered proper distance metrics. Most dissimilarity metrics can easily be converted
to a similarity measure s(·, ·) which expresses how comparable two observations
are, with similar observations obtaining higher values for these measures. The most
commonly used dissimilarity metric is the squared Euclidean distance ∥xj − x j∥22.
Here, ∥xj∥2 :=

√
x2j1 + · · ·+ x2jnf

and nf denotes the number of features considered.
Euclidean based (dis)similarity measures, however, are not appropriate to capture
the similarities between embeddings (Kogan et al., 2005). Within NLP, the cosine
similarity is therefore most often used to measure the similarity between embeddings
(Mohammad and Hirst, 2012; Schubert, 2021). Notwithstanding, the cosine similarity
ranges from -1 to 1 and in cluster analysis we generally require the (dis)similarity
measure to be non-negative (Everitt et al., 2011; Kogan et al., 2005; Hastie et al.,
2009). In this case, we can convert the cosine similarity to the angular similarity
which is restricted to [0, 1]. The angular similarity can be converted to the angular
distance, which is a proper distance metric. Conversely, the cosine dissimilarity is
not a distance measure since it does not satisfy the triangle inequality. In our study,
we therefore rely on the angular similarity and angular distance to group comparable
categories.

Table 3.6: Overview of existing (dis)similarity metrics to quantify the proximity between
observations. We select the angular similarity and angular distance, as they
are better suited to measure the similarity between embeddings and also
compatible with clustering algorithms.

Dissimilarity Similarity

Euclideana ∥xj − xj∥22 exp

(
−∥xj − xj∥22

σ2

)

Cosine 1− x⊤
j xj

∥xj∥2 · ∥xj∥2
x⊤

j xj

∥xj∥2 · ∥xj∥2

Angular π−1 cos−1

(
x⊤

j xj

∥xj∥2 · ∥xj∥2

)
1− π−1 cos−1

(
x⊤

j xj

∥xj∥2 · ∥xj∥2

)
a σ is a scaling parameter set by the user (Ng et al., 2001; Poon et al., 2012)
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Using a selected (dis)similarity metric, we compute the proximity measure
between all pairwise observations in the matrix with input features. We combine
all values in a J × J similarity matrix S or dissimilarity matrix D, which is used
as input in a clustering algorithm. Most algorithms require these matrices to be
symmetric (Hastie et al., 2009). In literature on unsupervised learning algorithms,
clustering methods are typically divided into three different types: combinatorial
algorithms, mixture modelling and mode seeking (Hastie et al., 2009). Both the
mixture modelling and mode seeking algorithms rely on probability density functions.
Conversely, the combinatorial algorithms do not rely on an underlying probability
model and work directly on the data. We opt for a distribution-free approach and
therefore focus on the combinatorial algorithms summarized in Table 3.7. For the
interested reader, a detailed overview of these algorithms is given Appendix B.2.

In most clustering techniques, the number of clusters K can be considered a
tuning parameter that needs to be carefully chosen from a range of possible (integer)
values. Hereto, we require a cluster validation index to select the value for K which
results in the most optimal clustering solution. We divide the cluster validation
indices into two groups: internal and external (Liu et al., 2013; Everitt et al., 2011;
Wierzchoń and Kłopotek, 2019; Halkidi et al., 2001). Using external validation
indices, we evaluate the clustering criterion with respect to the true partitioning (i.e.
the actual assignment of the observations to different groups is known). Conversely,
we rely on internal validation indices when we do not have the true cluster label
at our disposal. With such indices, we evaluate the compactness and separation of
a clustering solution. The compactness indicates how dense the clusters are and
compact clusters are characterized by observations that are similar and close to each
other. Clusters are well separated when observations belonging to different clusters
are dissimilar and far from each other. Consequently, we employ internal validation
indices to choose the value for K which results in compact clusters that are well
separated (Liu et al., 2013; Everitt et al., 2011; Wierzchoń and Kłopotek, 2019).

Several internal validation indices exist and each index formalizes the compactness
and separation of the clustering solution differently. An extensive overview of internal
(and external) validation indices is given in Liu et al. (2013), Wierzchoń and Kłopotek
(2019) and in the benchmark study of Vendramin et al. (2010). The authors concluded
that the silhouette and Caliński-Harabasz (CH) indices are superior compared to
other validation criteria. While these indices are well-known within cluster analysis
(Wierzchoń and Kłopotek, 2019; Govender and Sivakumar, 2020; Vendramin et al.,
2010), the results of Vendramin et al. (2010) do not necessarily generalize to our data
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Table 3.7: Overview of clustering algorithms, together with their strengths and drawbacks.

Algorithm Strengths Drawbacks

k-means - Well-known - Only suited for numeric features
(MacQueen et al., 1967) - Simple and easy to implement - Sensitive to outliers and the

initialization
- Computationally efficient - Local optima

k-medoids - Applicable to any feature type - Sensitive to the initialization
(Kaufman and Rousseeuw, 1990b) - Less sensitive to outliers - Local optima

Spectral clustering - Applicable to any feature type - Computationally expensive
(Hastie et al., 2009) - Less sensitive to outliers,

initialization and local optima
- Sensitive to the employed similarity
metric

- Able to identify non-convex
clustersa

HCAb - Applicable to any feature type - Computationally expensive
(Hastie et al., 2009) - Less sensitive to outliersc,

initialization and local optima
- Static; divisions or fusions of
clusters are irrevocable

a For every pair of points inside a convex cluster, the connecting straight line segment is within this cluster
b Hierarchical clustering analysis
c When using the single-linkage criterion
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set. We therefore include two additional, commonly used criteria: the Dunn index
and Davies-Bouldin index. Table 3.8 shows how these four indices are calculated.
For the Caliński-Harabasz, Dunn and silhouette index, higher values are associated
with a better clustering solution. Conversely, for the Davies-Bouldin index, we arrive
at the best partition by minimizing this criterion. A more in-depth discussion of
these criteria can be found in Appendix B.3.

Numerous papers compared the performance of different clustering algorithms
using different data sets and various evaluation criteria (Mangiameli et al., 1996;
Costa et al., 2004; de Souto et al., 2008; Kinnunen et al., 2011; Jung et al., 2014; Kou
et al., 2014; Rodriguez et al., 2019; Murugesan et al., 2021). They concluded that
none of the considered algorithms consistently outperforms the others and that the
performance is dependent on the type of data (Hennig, 2015; McNicholas, 2016a,b;
Murugesan et al., 2021). The authors advise to compare different clustering methods
using more than one performance measure. Consequently, we test the PHiRAT
algorithm (see Algorithm 2) with all possible combinations of the selected clustering
methods (i.e. k-medoids, spectral clustering and HCA, see Table 3.7) and internal
validation criteria (i.e. Caliński-Harabasz index, Davies-Bouldin index, Dunn index
and silhouette index, see Table 3.8).

3.4 Clustering NACE codes in a workers’ compen-

sation insurance product

We use a workers’ compensation insurance data set from a Belgian insurer to
illustrate the PHiRAT procedure. The portfolio consists of Belgian companies that
are active in various industries and occupations. The database contains claim-related
information, such as the number of claims and the claim sizes, over a course of eight
years. Additionally, for each of the companies we have the corresponding NACE-Ins
code (see Section 3.2). In this section, we demonstrate how to reduce the NACE-Ins
to its essence using PHiRAT. Our end objective is to incorporate the reduced version
of the hierarchical MLF as a risk factor in a technical pricing model as discussed in
Campo and Antonio (2023). We therefore also assess the effect of clustering on the
predictive accuracy. Furthermore, if the reduced structure properly captures the
essence, the predictive accuracy should generalize to out-of-sample and out-of-time
data. We employ PHiRAT using the training data set, which contains data from
the first seven years, to construct the reduced hierarchical risk factor. To examine
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Table 3.8: Internal clustering validation criteria used in this chapter.

Criterion Definition

Caliński-Harabasz index
(Caliński and Harabasz, 1974)

∑J′

j′=1 nj′∥cj′ − c∥22/(J ′ − 1)∑J′

j′=1

∑
xj∈Cj′

∥xj − cj′∥22/(J − J ′)
where c =

1

J

J∑
j=1

xj

Davies-Bouldin index
(Davies and Bouldin, 1979)

1

J ′

J′∑
j′=1

max
j′, j′ ̸=j′

 1
nj′

∑
xj∈Cj′

d(xj , cj′) +
1
nj′

∑
xj∈Cj′ d(x j, c j′)

d(cj′ , c j′)



Dunn index
(Dunn, 1974)

min
1⩽j′⩽J′

 min
1⩽ j′⩽J′

j ̸= j


min

xj∈Cj′
xj∈Cj′

d(xj ,x j)

max
1⩽κ⩽J′

{
max

xj ,xj∈Cκ

d(xj ,x j)

}



Silhouette index
(Rousseeuw, 1987)

s̃ =
1

J

∑
j=1

s(xj) where s(xj) =
b(xj)− a(xj)

max(a(xj), b(xj))
,

b(xj) = min
Cj′ ̸=Cj′

1

n j′

∑
xj∈Cj′

d(xj ,x j) and a(xj) =
1

nj′ − 1

∑
xj∈Cj′ , j̸=j

d(xj ,x j).

c
j′ denotes the cluster center or centroid of cluster C

j′ ; n
j′ denotes the number of observations in cluster C

j′



Clustering NACE codes in a workers’ compensation product 71

the generalizability of the reduced structure to out-of-sample and out-of-time data,
we use the test data set which contains data from the eight and most recent year.

3.4.1 Exploring the workers’ compensation insurance database

Claim-related information at the company level We first explore the distri-
bution of the claim-related information in our database. We consider the damage
rate Yit and the number of claims Nit of company i in year t. When calculating
Yit = Zit/wit (see equation (3.1)), we use the capped claim amount Zit for company
i in year t to prevent that large losses have a disproportionate impact on the results
(see Campo and Antonio (2023) for details on the capping procedure). To account
for inflation and for the size of the company, we express the damage rate per unit
of company- and year-specific salary mass wit. Figure 3.3 depicts the empirical
distribution of the damage rates Yit and number of claims Nit of the individual
companies. A strong right skew is visible in the empirical distribution of the Yit
(Figure 3.3(a)) and the Nit (Figure 3.3(c)). Moreover, this right skewness persists in
the log transformed counterparts (see panels (b) and (d) in Figure 3.3).

Claim-related information at different levels in the NACE-Ins hierarchy
The NACE-Ins partitions the companies according to their economic activity, at
varying levels of granularity. We compute the category-specific weighted average
damage rate and claim frequency at all levels in the hierarchy. Considering the top
level in the hierarchy (as explained in Section 3.2), we calculate the weighted average
damage rate for category j = (1, . . . , J) as

Ȳj =

∑
i,k,t wijktYijkt∑

i,k,t wijkt
(3.6)

and the expected claim frequency as

C̄j =
∑

i,k,tNijkt∑
i,k,t wijkt

. (3.7)

We then calculate the weighted average damage rate and expected claim frequency
for child-category jk = (j1, . . . , jKj) within parent-category j as

Ȳjk =

∑
i,t wijktYijkt∑

i,t wijkt
and C̄jk =

∑
i,tNijkt∑
i,t wijkt

. (3.8)
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Figure 3.3: Empirical distribution of the individual companies’ (a) damage rates Yit; (b)
log transformed damage rates Yit for Yit > 0; (c) number of claims Nit; (d)
log transformed Nit for Nit > 0. This figure depicts the Yit’s and Nit’s of all
available years in our data set.

When we consider more granular levels in the hierarchy, the computation is similar.
To calculate these quantities for a specific category, we only use observations that
are classified herein.

At different levels in the hierarchy, the empirical distribution of the category-
specific weighted average damage rates and expected claims frequencies show a
strong right skew (see Appendix B.4). The large range in values hinders the visual
comparison of the weighted average damage rates and expected claim frequencies
across categories at different levels in the hierarchy. We therefore apply a transfor-
mation solely for the purpose of visual comparison. Illustrating the procedure with
Ȳj , we first apply the following transformation

Ȳj = log(Ȳj + 0.0001) (3.9)
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since we have categories for which Ȳj = 0. Hereafter, we cap Ȳj using

Ȳc
j = max(min(Ȳj , Q3(Ȳj) + 1.5 IQR(Ȳj)), Q1(Ȳj)− 1.5 IQR(Ȳj)) (3.10)

where Qn(Ȳj) denotes the nth quantile of Ȳj and IQR(Ȳj) = Q3(Ȳj) − Q1(Ȳj)
denotes the interquartile range of Ȳj . The lower and upper bound of Ȳc

j correspond
to the inner fences of a boxplot (Schwertman et al., 2004). By transforming and
capping the quantities, we focus on the pattern seen in the majority of the categories.
Additionally, this facilitates the visual comparison across different categories.

Figure 3.4 visualizes the category-specific weighted average damage rates and
salary masses. Panel (a) depicts the category-specific weighted averages at all
levels in the hierarchy, panel (b) is close-up of the top right portion of panel (a)
and panel (c) represents the averages at the subsection and tariff group level.
We use a colour gradient for the weighted average damage rate. The darker the
colour, the higher the weighted average damage rate. Further, each ring in the
circle corresponds to a specific level in the hierarchy and the level is depicted by the
number in the ring. To represent the categories at a specific level, the rings are split
into slices proportional to the corresponding summed salary mass. The bigger the
slice, the larger the summed salary mass that corresponds to a specific category at
the considered level in the hierarchy. To preserve the confidentiality of the data, we
randomly assign Greek letters to each of the categories at the section level.

At all levels in the hierarchy, there is variation in the category-specific weighted
average damage rates. This is demonstrated in Figure 3.4(b), displaying a magnified
view of the top right section of Figure 3.4(a). Here, the blue tone varies between
the child categories of parent category λ at the section level. Additionally, at all
levels in the hierarchy, there are categories with a low summed salary mass (e.g.
γ, β, υ, δ, ρ, ϕ at the section level). In Figure 3.4, this is depicted by the thin slices.
These categories represent only a small part of our portfolio. Furthermore, most
of the categories with a low salary mass have a less granular representation in the
NACE system, having very few child categories compared to other categories. For
example, the parent category ϕ at the section level, has a low salary mass and only
a limited number of child categories across all levels in the hierarchy of the NACE
system.

Figure 3.5 depicts the category-specific expected claim frequency and salary
masses. Similarly to Figure 3.4, we use a colour gradient for the claim frequencies
and the size of a slice is again proportional to the summed salary mass. Overall,
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Figure 3.4: Category-specific weighted average damage rates: (a) at all levels in the hierarchy; (b) of the section λ and ϕ, including
those of their child categories at all levels in the hierarchy; (c) at the subsection and tariff group level. (b) is a
close-up of the top right part of (a). In this close-up, the width of ϕ at the section level and its child categories is
increased by a factor 10 to allow for better visual inspection.
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Figure 3.5: Category-specific expected claim frequencies: (a) at all levels in the hierarchy; (b) at the subsection and tariff group

level.
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the findings are comparable to Figure 3.4. The category-specific expected claim
frequency varies between the categories at all levels in the hierarchy.

Following, we focus only on the subsection and tariff group level. The
category-specific weighted average damage rates and expected claim frequencies at
the subsection and tariff group level are shown in Figure 3.4(c) and Figure 3.5(b),
respectively. To illustrate PHiRAT, we group similar categories at these levels in
the hierarchy and hereby, reduce the granularity of the hierarchical risk factor.

3.4.2 Engineering features to improve clustering results

Feature engineering is crucial to obtain a reliable clustering solution through PHiRAT.
As discussed in Section 3.2.2, we therefore engineer a set of features to capture the
riskiness and the economic activity of the categories. The predicted random effect
from the damage rate and claim frequency model expresses the category-specific
riskiness at the subsection and tariff group level. Further, we use LMMs to fit
the damage rate random effects models in (3.2) and (3.4). LMMs are less complex,
computationally more efficient and are less likely to experience convergence problems
compared to GLMMs. Alternatively, we can consider Tweedie GLMMs to model the
damage rate. We refer the reader to Campo and Antonio (2023) for a discussion
on the effect of the distributional assumption on the response. We use embeddings
to encode the category’s textual labels that describe the economic activity. In our
database, we have a description for every category at the subsection and tariff

group level.

To encode the textual information, we rely on pre-trained encoders. The first
pre-trained encoder we use is a Word2Vec model (Mikolov et al., 2013) trained on
part of the Google News data set that contains approximately 100 billion words
(https://code.google.com/archive/p/word2vec/). This encoder is only able to
give vector representations of words. As a result, when encoding a sentence for
example, we get a separate vector for each word in the sentence. To obtain a
single embedding for a sentence, we first remove stop words (e.g. the, and, . . . )
and then take the element-wise average of the embedding vectors of the individ-
ual words (Troxler and Schelldorfer, 2022). We also use the Universal Sentence
Encoder (USE) trained on Wikipedia, web news, web question-answer pages and
discussion forums (Cer et al., 2018) (https://tfhub.dev/google/collections/
universal-sentence-encoder/1). There are two different versions, v4 and v5,
which are specifically designed to encode greater-than-word length text (i.e. sen-

https://code.google.com/archive/p/word2vec/
https://tfhub.dev/google/collections/universal-sentence-encoder/1
https://tfhub.dev/google/collections/universal-sentence-encoder/1
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tences, phrases or short paragraphs). In this chapter, we use both versions.

The pre-trained Word2Vec encoder outputs a 300-dimensional embedding vector
and the USEs a 512-dimensional vector. To assess the quality of the resulting
embeddings, we inspect whether embeddings of related economic activities lie close
to each other in the vector space. We employ the dimension reduction technique
t-distributed stochastic neighbour embedding (t-SNE) (Van Der Maaten and Hinton,
2008) to obtain a two-dimensional visualization of the embeddings constructed for
different categories at the subsection level (see Figure 3.5). We opt to reduce
the dimensionality to two dimensions, since it allows for an easy representation
of the information in a scatterplot. t-SNE maps the high-dimensional embedding
vector ej for category j into a lower dimensional representation εj = (εj1, εj2)

whilst preserving its structure, enabling the visualization of relationships and the
identification of patterns and groups. Figure 3.6 visualizes the low-dimensional
representation of the embeddings resulting from the pre-trained Word2Vec encoder
(see Appendix B.5 for similar figures of USE v4 and v5).

Figure 3.6: Low-dimensional visualization of all embedding vectors at the subsection
level, resulting from the pre-trained Word2Vec model, encoding the textual
labels of the categories (see Figure 3.4). The text boxes display the textual
labels. The blue dots connected to the boxes depict the position in the
low-dimensional representation of the embeddings.

In Figure 3.6 we see that the embeddings of economically similar activities lie
close to each other. All manufacturing related activities are situated at the top of
the plot and in the left bottom corner, we have mostly activities that have a social
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component (e.g., education). In the right bottom corner, we have activities related
to the exploitation of natural resources. Further, the more unrelated the activities
are, the bigger the distance between their embedding vectors. For example, financial
intermediation (⟨εj1, εj2⟩ ≊ ⟨−22.5,−20⟩) and transport, storage and communication
(⟨εj1, εj2⟩ ≊ ⟨28, 10⟩) lie at opposite sides of the plot.

3.4.3 Clustering subsections and tariff groups using PHiRAT

We illustrate the effectiveness of PHiRAT by applying it to cluster categories at
the subsection and tariff group level, using the training set. We slightly adjust
Algorithm 2 to ensure that each of the resulting categories at the subsection

and tariff group level has sufficient salary mass. The minimum salary mass is
based on previous analyses of the insurance company and we need to adhere to this
minimum during clustering. Further, as discussed at the end of Section 3.3, we run
PHiRAT with all possible combinations of the clustering methods (i.e. k-medoids,
spectral clustering and HCA) and internal validation criteria (i.e. Caliński-Harabasz
index, Davies-Bouldin index, Dunn index and silhouette index). Per run, a specific
combination is used to cluster the categories at all levels in the hierarchy.

Figure 3.2 visualizes how PHiRAT works its way down the hierarchy. We start at
the subsection level and construct the feature matrix F1. Part of F1 is built using
an encoder to capture the textual information (see Section 3.2.2 and Section 3.4.2).
In our paper, we consider three different pre-trained encoders: (a) Word2Vec; (b)
USE v4 and (c) USE v5. We use these encoders to obtain the embeddings and
construct three separate feature matrices: (a) FWord2Vec

1 ; (b) FUSEv4
1 and (c) FUSEv5

1 .
All three feature matrices contain the same predicted random effects vectors 1Û

d

and 1Û
f
. The difference between the feature matrices is that the embeddings

are encoder-specific. Next, we define a tuning grid for the number of clusters
K1 ∈ (10, 11, . . . , 24, 25). Hence, the lower and upper bound to the number of
grouped categories is determined by the minimum and maximum value of the tuning
grid, respectively. In combination with the encoder-specific feature matrices, this
results in a search grid of three (i.e. the encoder-specific feature matrices) by 16 (i.e.
the possible values for the number of clusters). For every combination in this grid,
we run the clustering algorithm to obtain a clustering solution and calculate the
value of the internal validation criterion. We select the combination that results in
the most optimal clustering solution according to the validation measure. Figure 3.7
provides a visualization of this search grid. In this figure, we use k-medoids as
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clustering algorithm, the CH index as internal validation measure and we use a
colour gradient for the value of the validation criterion. The darker the colour, the
higher the value and the better the clustering solution. The x-axis depicts the tuning
grid for K1 and the y-axis the encoder-specific feature matrices. The CH index
is highest (= 11.913) for K1 = 19 in combination with FUSEv5

1 . According to the
selected validation measure, this specific combination results in the most optimal
clustering solution. Hence, we use this clustering solution to group the categories
j = (1, . . . , J) into clusters j′ = (1, . . . , J ′) (see Figure 3.2). Hereafter, we merge
clusters j′ = (1, . . . , J ′) with neighbouring clusters until each cluster has sufficient
salary mass.

Next, we proceed to cluster the categories at the tariff group level. Within
each cluster j′ at the section level, we first group consecutive categories (i.e. those
with consecutive NACE codes, see Section 3.2.1) at the tariff group level to ensure
that the salary mass is sufficient for every category. This level is a highly granular
representation of the economic activity. As a result, we have several categories with
a low number of observations and/or salary mass. By first merging consecutive tariff
groups, we ensure that each category has sufficient information and avoid potential
convergence problems. As before, we construct three encoder-specific versions of
F2. We then iterate over every parent category j′ to group the child categories. At
iteration j′, we use F2,{c:π(c)=j′} as input in a clustering algorithm. At the tariff

group level, we use the tuning grid K2,{c:π(c)=j′} ∈ (5, 6, . . . , min(Kj′ , 25)). Here
Kj′ denotes the total number of child categories of parent category j′. Similarly,
the lower and upper bound to the number of grouped child categories is dependent
on the minimum and maximum value in the tuning grid. We select the combination
of the encoder-specific feature matrix and K2,{c:π(c)=j′} that results in the most
optimal clustering solution to group the categories j′k = (j′1, . . . , j′Kj′), nested
within j′, into subclusters j′k′ = (j′1, . . . , j′K ′j′) (see Figure 3.2).

Distance measures and evaluation metrics For k-medoids clustering and
HCA we use the angular distance (see Section 3.3.2), as both algorithms require
a distance or dissimilarity measure. For spectral clustering we use the angular
similarity. We also need to define a distance measure d(·, ·) for the selected internal
evaluation criteria, except for the CH index. Hereto, we define d(·, ·) as the angular
distance. We calculate the evaluation criteria using all engineered features. We do
not standardize the features as this would transform the space of the embeddings
and hereby disrupt the placement of the textual information in the embedding space.
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Figure 3.7: Visualization of the search grid. The x-axis depicts the tuning grid K1 and the
y-axis the encoder-specific feature matrix that is used. Here, we use k-medoids
for clustering and the CH index as internal validation measure. The CH index
is highest (= 11.913) for K1 = 19 in combination with FUSEv5

1 , indicating
that this combination results in the most optimal clustering solution.

Further, since a large part of the feature vector consists of the high-dimensional
embedding vector, too much weight might be given to the similarity in economic
activity when choosing the optimal cluster solution. Therefore, we also evaluate a
second variation of the internal evaluation criteria. When calculating the criteria,
we remove the embedding vectors from the feature matrices. As such, we focus on
constructing a clustering solution that is most optimal in terms of riskiness. In this
evaluation we use the Euclidean distance for d(·, ·). Hence, at the subsection level,
we define d(xj ,x j) = ∥xj − x j∥22 where xj = (Ûd

j , Û
f
j ). Similarly, at the tariff

group level, d(xjk,xjk) = ∥xjk − xjk∥22 and xjk = (Ûd
jk, Û

f
jk). In what follows we

discuss the results obtained with this approach. Results obtained with the complete
feature vector, including the embedding, are given in Appendix B.6.

Implementation We perform the main part of the analysis using the statistical
software R (R Core Team, 2019). For k-medoids and HCA, we rely on the cluster

(Maechler et al., 2022) and stats package, respectively. For spectral clustering, we
follow the implementation of Ng et al. (2001) and developed our own code. Spectral
clustering partially depends on the k-means algorithm to obtain a clustering solution
(see Appendix B.2). However, k-means is sensitive to the initialization and can
get stuck in an inferior local minimum (Fränti and Sieranoja, 2019). One way to
alleviate this issue is by repeating k-means with different initializations and to select
the most optimal clustering solution. Hence, to prevent that spectral clustering
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results in a suboptimal clustering solution, we repeat the k-means step a 100 times.

3.4.4 Evaluating the clustering solution

The main aim of our procedure is to reduce the cardinality of a hierarchically
structured categorical variable, which can then be incorporated as a risk factor in a
predictive model to underpin the technical price list (Campo and Antonio, 2023).
Ideally, we maintain the predictive accuracy whilst reducing the granularity of the
risk factor. As discussed in Section 3.4.3, we employ PHiRAT to group similar
categories at the subsection and tariff group level. We refer to the less granular
version of the hierarchical risk factor as the reduced risk factor.

To assess the predictive accuracy of a clustering solution, we fit an LMM

E[Yij′k′t|Ud
j′ , U

d
j′k′ ] = µd + Ud

j′ + Ud
j′k′ (3.11)

where the reduced risk factor enters the model through the random effects Uj′ and
Uj′k′ . We include the salary mass wij′k′t as weight. We opt for an LMM given
its simplicity and computational efficiency (Campo and Antonio, 2023). Next, we
calculate the predicted damage rate as Ŷij′k′t = µ̂d + Ûd

j′ + Û
d
j′k′ for the training and

test set as introduced in the beginning of Section 3.4.

Benchmark clustering solution To evaluate the clustering solution obtained
with the proposed data-driven approach, we need to compare it to a benchmark where
we do not rely on PHiRAT. One possibility is to fit (3.11) with the nominal variable
composed of the original categories at the subsection and tariff group level. In
our example, fitting this LMM results in negative variance estimates and yields
incorrect random effect predictions. Consequently, to obtain a benchmark clustering
solution, we start at the subsection level and merge consecutive categories until
the salary mass is sufficient (e.g. 01 agriculture and 02 forestry). Similarly, we index
the merged categories using j′ = (1, . . . , J ′). Hereafter, within each of the (grouped)
categories at the subsection level, we group consecutive categories (e.g. 142121
and 142122 ) at the tariff group level. Again, we use the minimum salary mass as
defined by the insurance company and we use k′ = (1, . . . ,K ′j′) as an index for the
grouped categories. This results in a hierarchical MLF in which we merged adjacent
categories with insufficient salary mass. To construct the benchmark model, we fit
an LMM with the same specification as in (3.11).
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Performance measures Using the predicted damage rates on the training and
test set, we compute the Gini-index (Gini, 1921) and loss ratio. The Gini-index
assesses how well a model is able to distinguish high-risk from low-risk companies and
is considered appropriate for the comparison of competing pricing models (Denuit,
Sznajder and Trufin, 2019; Campo and Antonio, 2023). The higher the value, the
better the model can differentiate between risks. The Gini-index has a maximum
theoretical value of 1. The loss ratio measures the overall accuracy of the fitted
damage rates and is defined as Ztot

t /Ẑtot
t , where Ztot

t =
∑

i,j′,k′ Zij′k′t denotes the
total capped claim amount and Ẑtot

t =
∑

i,j′,k′ Ẑij′k′t the total fitted claim amount.
To obtain Ẑij′k′t, we transform the individual predictions Ŷij′k′t as (see equation
(3.1))

Ẑij′k′t = Ŷij′k′t · wij′k′t. (3.12)

Due to the balance property (Campo and Antonio, 2023), the loss ratio is one when
calculated using the training data set. We therefore compute the loss ratio only for
the test set.

Predictive performance Table 3.9 depicts the performance of the different
clustering solutions on the training and test sets. In this table, J ′ denotes the total
number of grouped categories at the subsection level and

∑J′

j′=1K
′
j′ denotes the

total number of grouped categories at the tariff group level. With the benchmark
clustering solution, we end up with a large number of different categories at both
hierarchical levels (18 + 641 = 659 separate categories in total). Conversely, with
our data-driven approach the maximum is 221 (14 + 207; k-medoids with Davies-
Bouldin index) and the minimum is 97 (10 + 87; k-medoids with the CH index).
Consequently, PHiRAT substantially reduces the number of categories. Moreover,
we are able to retain the predictive performance. On both the training and test set,
the Gini-indices of nearly all clustering solutions are higher than the Gini-index of
the benchmark solution. Hence, we are better able to differentiate between high-
and low-risk companies with the clustering solutions. On the training data set, the
highest Gini-indices are seen for the k-medoids algorithm using the silhouette index
and the spectral clustering algorithm using the Dunn index. On the test set, spectral
clustering using the CH index and silhouette index result in the highest Gini-index
whereas the benchmark has the lowest Gini-index. However, the loss ratio of most
clustering solutions is higher than the loss ratio of the benchmark clustering solution
(= 1.006). This indicates that, when we use the reduced risk factor in an LMM, we
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generally underestimate the total damage. One exception is the clustering solution
resulting from HCA using the Davies-Bouldin index, which has the same loss ratio
as the benchmark (= 1.006). In addition, for this solution the Gini-index is among
the highest (0.675 on the training and 0.616 on the test set). Using the result from
HCA with the Davies-Bouldin index, we are able to reduce the total number of
categories to 207 (= 14 + 193). Compared to the benchmark solution, we obtain
the same overall predictive accuracy (i.e. the loss ratio is approximately equal) and
we can better differentiate between high- and low-risk companies.

Table 3.9: Predictive performance on the training and test set.

Training Test
J ′

∑J′

j′=1K
′
j′ Gini-index Gini-index Loss ratio

Benchmark 18 641 0.658 0.585 1.006
HCA:
Silhouette index 13 100 0.667 0.596 1.007
Dunn index 15 202 0.656 0.599 1.011
Davies-Bouldin index 14 193 0.675 0.616 1.006
CH index 15 140 0.667 0.614 1.010

k-medoids:
Silhouette index 12 107 0.678 0.613 1.008
Dunn index 10 130 0.657 0.598 1.010
Davies-Bouldin index 14 207 0.670 0.619 1.010
CH index 10 87 0.676 0.605 1.011

Spectral clustering:
Silhouette index 12 86 0.673 0.628 1.012
Dunn index 12 143 0.677 0.624 1.010
Davies-Bouldin index 12 166 0.669 0.618 1.010
CH index 12 102 0.670 0.628 1.013

The clustering solution resulting from HCA with the Davies-Bouldin index
offers a good balance between reducing granularity and enhancing differentiation
whilst preserving predictive accuracy. If, however, a sparse representation and good
differentiation is more important than the overall predictive accuracy, the result
from spectral clustering with the silhouette index is a better option. The latter
clustering solution is visualized in Figure 3.8. This figure is similar to Figure 3.4(a)
and depicts the cluster-specific weighted average damage rates at the subsection

and tariff group level. The two figures show that PHiRAT substantially reduces
the total number of categories (12 + 86 = 98). Furthermore, spectral clustering with
the silhouette index is one of the combinations that results in the best differentiation
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between high- and low-risk companies (Gini index is 0.673 and 0.628 on the training
and test set, respectively).

Figure 3.8: Cluster-specific weighted average damage rates at the subsection and tariff
group level, when employing PHiRAT with spectral clustering and the sil-
houette index.

Interpretability After clustering, it is imperative to evaluate the interpretability
of the solution. The grouping should provide us with meaningful insights into the
underlying structure of the data. Building on the strong predictive performance of
the solution resulting from spectral clustering with the silhouette index, we examine
this specific clustering solution in more detail.

Figure 3.9 visualizes which categories are clustered at the subsection level. At
this point we have not yet merged neighbouring clusters to ensure sufficient salary
mass (see Section 3.4.3). Figure 3.9(a) shows the Ûd

j and Ûf
j of the fitted damage rate

and claim frequency random effects models (see (3.2) and (3.3)). The number in the
plot indicates which cluster the categories are appointed to. The description of the
category’s economic activity is given in Figure 3.9(b). In total we have 24 clusters,
19 of which consist of a single category. Inspecting the clusters in detail, we find
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that the riskiness and economic activity of grouped categories are similar. Moreover,
categories that are similar in terms of riskiness (i.e. those with similar random effect
predictions) but different in economic activity are assigned to different clusters. For
example, the Ûd

j ’s and Ûf
j ’s are similar for: a) manufacture of rubber and plastic

products; b) agriculture, hunting and forestry ; c) manufacture of wood and wood
products ; d) manufacture of other non-metallic mineral product and e) manufacture
of basic metals and fabricated metal products. These industries are partitioned into
three clusters. The category in cluster 2 (i.e. manufacture of rubber and plastic
products) manufactures organic products. Conversely, the categories in cluster 17
(i.e. manufacture of other non-metallic mineral product and manufacture of basic
metals and fabricated metal products) use inorganic materials and the categories in
cluster 13 (i.e. agriculture, hunting and forestry and manufacture of wood and wood
products) utilize products derived from plants and animals.

Figure 3.10 depicts the clustered categories k′ at the tariff group level, nested
within category j′ = manufacture of chemicals, chemical products and man-made
fibres at the subsection level. The Ûd

j′k and Ûf
j′k of the fitted damage rate and

claim frequency random effects model (see (3.4) and (3.5)) are shown in the left
panel of Figure 3.10 and the textual information in the right panel. When the text is
separated by a semicolon, this indicates that categories are merged before clustering
to ensure sufficient salary mass (see Section 3.4.3). Similar to Figure 3.9, both the
riskiness and economic activity are taken into account when grouping categories.
This is best illustrated for the categories in the red rectangle in Figure 3.10(a).
Herein, we have three categories: (a) pyrotechnic items: manufacture; glue, gelatin:
manufacture; (b) chemical basic industry and (c) pharmaceutical industry. Of these,
pyrotechnic items: manufacture; glue, gelatin: manufacture (number 7 in the top
right corner of the red rectangle) and chemical basic industry (number 3 in the top
right corner of the red rectangle) have nearly identical random effect predictions.
Notwithstanding, both categories are not grouped. Instead, the category chemical
basic industry is merged with pharmaceutical industry (number 3 in the bottom left
corner). The latter two categories manufacture chemical compounds. In addition,
companies in chemical basic industry mainly produce chemical compounds that are
used as building blocks in other products (e.g. polymers). Building blocks (or raw
materials) that are needed by companies involved in manufacturing pyrotechnic
items, glue and gelatin (e.g. glue is typically made from polymers (Ebnesajjad,
2011)).
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Figure 3.9: Visualization of the grouped categories at the subsection level (see Figure 3.2): (a) the clustered categories and the
original random effect predictions Ûd

j and Ûf
j ; (b) the description of the economic activity of the categories.
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Figure 3.10: Visualization of the clustered child categories at the tariff group level, with parent category manufacture of chemicals,
chemical products and man-made fibres at the subsection level (see Figure 3.2): (a) the clustered categories and the
original random effect predictions Ûd

j′k and Ûf
j′k; (b) the description of the economic activity of the categories.
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3.5 Discussion

This chapter presents the data-driven PHiRAT approach to reduce a hierarchically
structured categorical variable with a large number of categories to its essence, by
grouping similar categories at every level in the hierarchy. PHiRAT is a top-down
procedure that preserves the hierarchical structure. It starts with grouping categories
at the highest level in the hierarchy and proceeds to lower levels. At a specific level
in the hierarchy, we first engineer several features to characterize the profile and
specificity of each category. Using these features as input in a clustering algorithm,
we group similar categories. The procedure stops once we grouped the categories at
the lowest level in the hierarchy. When deployed in a predictive model, the reduced
structure leads to a more parsimonious model that is easier to interpret, less likely
to experience estimation problems or to overfit. Further, the increased number of
observations of grouped categories leads to more precise estimates of the category’s
effect on the response.

Using a workers’ compensation insurance portfolio from a Belgian insurer, we
illustrate how to employ PHiRAT to reduce the granular structure of the NACE
code. Using PHiRAT, we are able to substantially reduce the dimensionality of
this hierarchical risk factor whilst maintaining its predictive accuracy. The reduced
risk factor allows for better differentiation, has the same overall precision as the
original risk factor and the grouping seems to generalize well to out-of-sample data.
Moreover, the resulting clusters consist of categories that are similar in terms of
riskiness and economic activity. Furthermore, the results show that embeddings are
an efficient and effective method to capture textual information.

Our approach results in a clustering solution that can provide insurers with
improved insights into the underlying risk structure of a hierarchical covariate. By
capturing the key characteristics of the original hierarchically structured risk factor,
the reduced risk factor offers a more informative and concise representation of
the various risk profiles. Insurers can incorporate the reduced version into their
pricing algorithms to better assess the riskiness associated with each category in
said hierarchical covariate.

Negative variance estimates in the random effects model and computational
limitations with the generalized fused lasso penalty prevent us from constructing
a different benchmark model. Hence, future research can examine the robustness
of our approach by examining its performance in other data sets or applications
and by comparing it with alternative approaches. Additionally, future research can
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aim to improve our proposed solution in multiple directions. The final clustering
solution depends on the engineered features, the clustering algorithm and the cluster
evaluation criterion. Constructing appropriate and reliable features when employing
PHiRAT is crucial to obtain a good clustering solution. In this paper, we rely on
random effects models to capture the riskiness of the categories. Alternatively, we
can characterize the risk profile using entity embeddings (Guo and Berkhahn, 2016).
Here, we train a neural network to create entity embeddings that map the categorical
values to a continuous vector, ensuring that categories with similar response values
are located closer to each other in the embedding space. Additionally, we advise to
run PHiRAT using different clustering algorithms and cluster evaluation criteria,
since no algorithm consistently outperforms the others (Hennig, 2015; McNicholas,
2016a,b; Murugesan et al., 2021). Moreover, the robustness of the clustering solution
largely depends on the stability of the selected clustering method. Further, NLP is a
rapidly evolving field and we only considered three pre-trained encoders. We did not
include the pre-trained Bidirectional Encoder Representations from Transformers
(BERT) model (Devlin et al., 2018), an encoder that is being increasingly used by
actuarial researchers (see, for example, Xu et al. (2022); Troxler and Schelldorfer
(2022)). Subsequent studies can assess whether BERT-based models result in
higher quality embeddings, which in turn leads to better clustering solutions. In
addition, researchers can employ alternative approaches to represent the parent-child
relationships between categories in hierarchically structured data. Such as Argyrou
(2009), for example, who formalizes the hierarchical relations using graph theory and
applies a self-organizing map (Kohonen, 1995) to obtain a reduced representation of
the hierarchical data.





Chapter 4

An engine to simulate insurance
fraud network data

Traditionally, the detection of fraudulent insurance claims relies on business rules
and expert judgement which makes it a time-consuming and expensive process
(Óskarsdóttir et al., 2022). Consequently, researchers have been examining ways to
develop efficient and accurate analytic strategies to flag suspicious claims. Feeding
learning methods with features engineered from the social network of parties involved
in a claim is a particularly promising strategy (see for example Óskarsdóttir et al.
(2022); Van Vlasselaer et al. (2016); Tumminello et al. (2023)). When developing
a fraud detection model, however, we are confronted with several challenges. The
uncommon nature of fraud, for example, creates a high class imbalance which
complicates the development of well performing analytic classification models. In
addition, only a small number of claims are investigated and get a label, which
results in a large corpus of unlabeled data. Yet another challenge is the lack of
publicly available data. This hinders not only the development of new methods, but
also the validation of existing techniques. We therefore design a simulation machine
that is engineered to create synthetic data with a network structure and available
covariates similar to the real life insurance fraud data set analyzed in Óskarsdóttir
et al. (2022). Further, the user has control over several data-generating mechanisms.
We can specify the total number of policyholders and parties, the desired level of
imbalance and the (effect size of the) features in the fraud generating model. As
such, the simulation engine enables researchers and practitioners to examine several
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methodological challenges as well as to test their (development strategy of) insurance
fraud detection models in a range of different settings. Moreover, large synthetic
data sets can be generated to evaluate the predictive performance of (advanced)
machine learning techniques.

This chapter is based on Bavo D.C. Campo and Katrien Antonio. (2023). An
engine to simulate insurance fraud network data. arXiv: 2304.09046. Available at:
https: // arxiv. org/ abs/ 2304. 09046 .

4.1 Introduction

Fraudulent activity in the insurance industry causes significant financial losses for
both insurance companies and policyholders. In non-life insurance, the total yearly
cost of fraudulent claims is estimated to be more than $40 billion in the United
States (FBI, 2022). For an average family, this leads to an increased yearly premium
of $400 to $700 (FBI, 2022). To detect and mitigate fraud, insurance companies
implement various anti-fraud measures. Traditionally, insurance companies rely on
a combination of business rules and expert judgment to identify fraudulent claims
(Óskarsdóttir et al., 2022). The business rules flag suspicious claims, which are
then sent to experts who determine whether the claim is fraudulent or not (Warren
and Schweitzer, 2018). These in-depth investigations, however, are time-intensive
and costly. Researchers have therefore developed insurance fraud detection models
combining business rules and analytical techniques to flag the most suspicious
claims, which are sent to the experts for further investigation. As such, experts
can focus solely on the claims with a high likelihood of fraud and avoid spending
precious resources on examining non-fraudulent claims. Insurers predominately
rely on analytics to prevent fraud (European Insurance and Occupational Pensions
Authority, 2019). Moreover, fraud detection is considered an area for more intense
use of big data and analytics in the insurance industry.

Within fraud analytics, researchers rely on a wide range of statistical and
machine learning techniques (see Ngai et al. (2011) and Albashrawi (2016) for an
overview). In the literature, we find examples of both supervised and unsupervised
(machine learning) techniques to construct fraud detection models. Vosseler (2022),
for example, developed an unsupervised anomaly detection technique to identify
fraudulent insurance claims. Nur Prasasti et al. (2020) constructed fraud detection
models using neural networks and tree-based machine learning techniques. The
accuracy of such models, however, greatly depends on the input. We typically use

https://arxiv.org/abs/2304.09046
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traditional claim characteristics, such as the claim amount, as features in a fraud
detection model (Baesens et al., 2015). These characteristics are static whereas the
typical features of fraudsters tend to be dynamic (Óskarsdóttir et al., 2022; Gomes
et al., 2021; Tumminello et al., 2023). According to Jensen (1997), fraudsters adapt
their tactics in response to fraud detection systems and hence, the typical fraudster
profile evolves over time.

One particularly promising approach to capture the characteristics of fraudsters
is through social network analytics (Van Vlasselaer et al., 2016; Óskarsdóttir et al.,
2022; Tumminello et al., 2023). In an insurance context, social network data captures
the relationship between claims on the one hand and policyholders and other involved
parties (e.g., garage, broker, expert) on the other hand. By analyzing the social
network structure of reported claims, insurers can unravel patterns and relationships
among policyholders and claims that are indicative of fraud. Moreover, this approach
potentially uncovers organized schemes of collaborating fraudsters who are trying
to hide their tracks. Criminals often commit crimes in groups to increase rewards
and to decrease the risk of detection (Reiss, 1988; Andresen and Felson, 2009).
Furthermore, in organized crime, such as fraud, social connections play a crucial role
since these connections are based on trust and provide access to co-offenders and
opportunities (van Koppen et al., 2010). As such, social network analytics can assist
in identifying enduring relationships between fraudsters even as overt characteristics
undergo changes.

Nonetheless, publicly available data on insurance fraud is scarce, in particular
data with a social network structure. This makes it difficult for researchers to
test, validate and improve existing fraud detection methods. Moreover, the lack
of data hinders the reproducibility of research findings and the discovery of novel
methodologies (Baesens, 2023). The main reason for the limited availability is the
sensitive nature of the data (Lopez-Rojas et al., 2015). Insurance data sets contain
confidential information about the insurance company and its policyholders. In
consequence, the data used to develop and validate fraud detection methods and
models is almost never shared. Researchers in fraud analytics are confronted with
several inherent methodological challenges when developing analytic models for fraud
detection (Baesens, 2023). Investigating suspicious claims is a time-intensive and
expensive process, which results in only few claims being labeled (i.e. whether the
claim is fraudulent or non-fraudulent) (Warren and Schweitzer, 2018). In addition,
due to fraud being uncommon, data sets are often characterized by a severe class
imbalance (see, for example Óskarsdóttir et al. (2022); Gomes et al. (2021); Subudhi
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and Panigrahi (2020)). Another challenge is the continuous development of machine
learning techniques (Baesens, 2023). To assess whether these perform better or on
par with existing techniques, we need to evaluate competing models or techniques
in similar conditions. That is, using the same (type of) data set.

One way to address the scarcity of publicly available data, is by using a simu-
lation engine to generate synthetic data that mimics the structure of the original
data set (Lopez-Rojas et al., 2015). Simulation engines enable researchers to per-
form benchmark studies to investigate the properties and performance of various
statistical and machine learning techniques (Morris et al., 2019; Khondoker et al.,
2016). Additionally, synthetic data facilitates the development of new methods and
stimulates the reproducibility of research. Recently, simulation engines have gained
considerable attention in actuarial science. Gabrielli and Wüthrich (2018) developed
a simulation engine to generate individual claim histories of non-life insurance claims
and So et al. (2021) devised an engine to generate synthetic telematics data. However,
both engines employ neural networks trained on a single real insurance data set
to generate synthetic data that closely mirrors the original data. Conversely, the
simulation machine of Avanzi et al. (2021) does not emulate a single data set when
generating individual non-life insurance claims. Instead, it allows users to generate
a diverse set of scenarios which vary in complexity.

In this chapter, we design a simulation machine that generates synthetic insurance
fraud network data. The simulation engine is inspired by and mimics the structure
and properties of the non-life motor insurance data used in Óskarsdóttir et al. (2022),
which contains both traditional claim and policy(holders) characteristics as well as
social network features. When generating the synthetic data, the user has control
over several data-generating mechanisms. Both policyholder, contract-specific and
claim characteristics as well as the dependence between them can be adjusted.
Further, when simulating the number of claims, the individual claim costs and the
claim labels (i.e. fraudulent or non-fraudulent), the user can specify the (effect size
of the) features that are used in the data-generating model. Specific characteristics
of the social network structure and fraud investigation process can be adjusted as
well. In addition, the size of the resulting data set and the required level of class
imbalance can be set by the user. Hereby, the simulation engine provides researchers
with a powerful and valuable tool for evaluating and improving the performance of
fraud detection methods across various scenarios. The simulation engine’s ability to
produce large data sets makes it ideal for machine learning techniques that require
large amounts of data. Furthermore, researchers and practitioners can use the engine
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to test their (development strategy of) insurance fraud detection models and to
investigate the performance of a wide range of analytic methods in tackling the
challenges inherent to fraud data sets, e.g. the severe class imbalance and large
number of missing labels. Additionally, by examining a specific method or model
in these scenarios, researchers can gain a better understanding of its strengths and
limitations.

This chapter is structured as follows. In Section 4.2, we discuss the fraud cycle,
existing analytic fraud detection strategies and provide a comprehensive overview of
social network analytics for fraud detection strategies. Further, we address several
challenges that are an integral part of fraud detection research. Section 4.3 delves
into the design of the simulation engine and explains how a synthetic data set is
generated. Section 4.4 showcases the simulation engine’s capabilities by generating
and exploring two different types of synthetic data sets. In the first type we introduce
a social network effect when simulating the claim labels and in the second type, we
omit the social network effect. Additionally, using the artificial data, we provide
a practical demonstration of the development and evaluation of a fraud detection
model. We conclude the chapter with Section 4.5.

4.2 Fighting fraud with data analytics: strategies,

techniques and challenges

In this section, we provide an overview of some conventional and emerging approaches
to fraud detection. We highlight the role of analytics in uncovering fraudulent
activities and discuss the various challenges that researchers and practitioners face
in this domain.

4.2.1 Uncovering fraud: traditional and analytic approaches

In insurance, policyholders file a claim to request a financial compensation for a
covered loss. The insurance company retains all relevant information on past and
current claims in a database, typically stored in a tabular format. The data set
encompasses claim, policyholder, and contract-specific attributes, collectively referred
to as traditional claim characteristics. Certain claims, however, are illegitimate and
detecting fraudulent claims is essential for insurance companies to prevent financial
losses and to protect their policyholders. Hereto, insurers adopt either a traditional,
a data-driven or a combined strategy to flag suspicious claims.
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Expert-based fraud detection The traditional approach to detect fraud is
expert-based (Baesens et al., 2015). This approach is two-fold. First, the insurance
company flags certain claims as suspicious. To flag suspicious claims, companies rely
on a set of business rules that are based on insights from previous investigations.
Second, once a claim is flagged as suspicious, the claim is passed to an expert, who
conducts an in-depth investigation to determine whether the claim is fraudulent or
not (Warren and Schweitzer, 2018). Hereafter, newly obtained insights from the
investigation are used to adjust the procedure for identifying suspicious claims. This
is known as the fraud detection cycle.

The expert-based approach, however, has some notable shortcomings (Baesens
et al., 2015). It is highly dependent on the manual input and expertise of the
expert. In addition, investigating claims is a time-intensive and expensive process.
Moreover, the dynamic nature of fraud requires that the rule base to flag suspicious
claims needs to be continuously monitored, improved and updated. To address
these drawbacks, researchers have developed alternative approaches to detect fraud
in a more automated manner (Baesens et al., 2015; Ngai et al., 2011; Albashrawi,
2016; Barman et al., 2016). Notwithstanding, even with the alternative approaches,
the inclusion of expert knowledge and input is critical to the success of the fraud
detection system.

Fraud analytics The limitations of the expert-based approach prompted re-
searchers to develop data-driven methodologies to detect fraud. In the literature,
either supervised or unsupervised learning techniques or a combination of both
are employed. Within fraud detection, we use unsupervised learning techniques to
identify anomalous behavior (Baesens et al., 2015). There is a plethora of anomaly
detection techniques available and Hilal et al. (2022) provides an extensive overview
of anomaly detection techniques to detect financial fraud. In our paper, we focus
on supervised learning methods which learn from historical, labeled data. There
are numerous supervised techniques available that can be utilized to construct a
fraud detection model, ranging from logistic regression models to neural networks.
A comprehensive literature review of the supervised techniques applied in financial
fraud detection can be found in Ngai et al. (2011); Barman et al. (2016); Albashrawi
(2016).

One way to tackle insurance fraud detection is by treating it as a binary clas-
sification problem. Here, our response variable Yi can take on only two values: 0
(non-fraud) or 1 (fraud). Further, each claim i has a corresponding covariate vector
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xi. The values herein correspond to a set of features that provide information on the
policyholder, contract, claim, network and any other relevant features that can assist
in identifying fraudulent claims. The general equation of a predictive classification
model is

P [Yi = 1|xi] = f(xi) (4.1)

where P [Yi = 1|xi] denotes the probability that claim i is fraudulent given covariate
vector xi and f(xi) denotes the predictive model. Logistic regression is one of
the most popular models to estimate (4.1) (Ngai et al., 2011; Baesens et al., 2015;
Barman et al., 2016; Albashrawi, 2016). Other commonly employed techniques
include tree-based learners (Kho and Vea, 2017; Roy and George, 2017) and neural
networks (Srivastava et al., 2016; Ghobadi and Rohani, 2016).

To develop a fraud detection model, we rely on historical, labeled data of past
observed fraud behavior (Baesens et al., 2015). This historical data is commonly
derived from the expert judgment of previously investigated claims and serves as
the foundation for constructing an effective fraud detection model. By training the
fraud detection model on labeled claims, we aim to find hidden patterns that allow
us to identify new fraudulent claims.

4.2.2 Enriching traditional claim characteristics with social
network data

Both the expert-based and fraud analytics approach commonly rely on traditional
claim characteristics stored in a tabular data set. To go beyond this tabular
structure, we can rely on social network analytics which extracts information from
the relational structure in the data set. As such, we augment the database with
supplementary information on the social network structure of the claim and the
involved parties. The involved parties are typically the policyholder and the experts
involved in the claim (Óskarsdóttir et al., 2022). Certain contracts involve the
active participation of brokers, hereby incorporating them into the network structure.
Further, depending on the type of insurance, other parties may be present as well.
In motor insurance, for example, we commonly also have the auto repair shop that
repaired the vehicle (hereafter referred to as the garage). In constructing the network
structure, Óskarsdóttir et al. (2022) take a holistic view by integrating information
across multiple lines of business. In this chapter, we focus exclusively on the social
network structure within one specific insurance product.

Figure 4.1(a) depicts a toy example of a social network consisting of seven claims
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and seven involved parties. In this figure, the edges symbolize the connections
between the claims and the parties. The claims and parties are represented by
circles and the claims in the network are color-coded. Green claims correspond to
non-fraudulent claims and fraudulent claims are colored red. There is a notable
cluster of fraudulent claims (i.e. c5, c6 and c7) that are strongly interconnected.
Party p7 is connected to all three fraudulent claims and might be the central figure
in the criminal network. Via the claims, p7 is connected to the fraudsters p5 and
p6. In this example, all fraudsters are connected to each other via one or more
fraudulent claims.

To obtain a mathematical representation of the network data, we use a bipartite
network of nodes C ∪ P and edges E. C denotes the set of all claims and P the set
of all parties in the network. E is the set of edges that connect the nodes in C to
the nodes in P . The bipartite network G = (C ∪P,E) is undirected (i.e. there is no
direction in the edges). We use ci to denote an individual claim, where i ∈ (1, . . . , nC)

and nC is the total number of nodes in C. pj denotes an individual party. Here,
j ∈ (1, . . . , nP ) where nP is the total number of nodes in P . The network’s edges
are represented in a weight matrix W of dimension nP × nC . Each individual edge
carries a certain weight wij that reflects the strength of the relationship between
claim i and party j. If wij > 0, claim ci is connected to party pj . We have an
unweighted network when all nonzero values in W are equal to one.

We refer to the set of nodes, connected to node ci via a path of exactly k edges,
as the kth order neighborhood of ci and we denote it as N k

ci . Hence, the first-order
neighborhood of a claim ci consists of all involved parties

N 1
ci = {pj |wij ̸= 0} (4.2)

and the second-order neighborhood of ci

N 2
ci = {ck|pj ∈ N 1

ck
∧ wkj ̸= 0} \ ci. (4.3)

are all the claims connected to the parties in N 1
ci . In an unweighted network, we

refer to the number of nodes in a node’s first order neighborhood as the degree of
the node. For claim ci, we denote this as di and dj refers to the degree of party pj .
The degree of all claims is summarized in a nC × nC diagonal matrix DC , where
(DC)ii = di ∀ i. Similarly, the nP × nP diagonal matrix DP contains the degrees of
all parties.
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Figure 4.1: A toy example of a social network in an insurance context.

(a) Visualization of the relationships between the claims and the
involved parties.
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(b) The weight matrix W corresponding to the social network
example.
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In this toy example of a social network, we use an unweighted network. Fig-
ure 4.1(b) represents the corresponding W that captures the connections in the
example. The strong interconnectedness between fraudsters and fraudulent claims is
also reflected in W . In the lower right corner of W we notice a distinct cluster, which
predominantly consists of fraudulent nodes and which reveals a web of fraudsters.
We observe another group of connected claims in the upper left corner of W . This
cluster consists mostly of legitimate claims. Furthermore, there are only a few links
connecting fraudulent and non-fraudulent nodes, indicating limited relationships
between the two groups.

Homophily One of the fundamental concepts in a network-based fraud detection
approach is the concept of homophily (Baesens et al., 2015; Óskarsdóttir et al., 2022).
This refers to the tendency of people to form social connections with individuals
that are similar to themselves in some way (Newman, 2010). Translated to an
insurance context, this means that fraudulent claims are predominantly linked to
other fraudulent claims, while non-fraudulent claims tend to be connected to other
non-fraudulent claims. Moreover, fraudulent and non-fraudulent claims exhibit a
weaker degree of connection with each other.

To assess whether there are patterns of homophily present in the network, we
compute the dyadicity and heterophilicity of the network (Park and Barabási, 2007;
Baesens et al., 2015). Dyadicity measures the connectedness between nodes with the
same label. The higher the dyadicity, the more densely connected the same-label
nodes are, compared to what is expected based on a random network configuration.
Conversely, heterophilicity assesses the degree of interconnection between nodes with
different labels. Networks exhibit high heterophilicity when nodes with different
labels show higher interconnectedness compared to what is expected by chance.

In a fraud context, the investigated claims can be labeled as fraudulent (1) or
non-fraudulent (0). Claims that are uninvestigated have no label and are referred
to as unlabeled. Hence, there are three different labels present in the data set. If
our focus is on the identification of dense networks of fraudulent claims, we can
adopt a one-versus-all classification strategy and group the unlabeled with the
non-fraudulent claims. We denote the total number of fraudulent claims as 1nC

and 0nC denotes the total number of non-fraudulent and unlabeled claims. Further,
nC = 1nC + 0nC . In this example, we have three types of relationships between
claims or so-called dyads. That is: fraudulent claims connected to other fraudulent
claims (1 - 1); fraudulent claims linked to non-fraudulent, unlabeled claims (1 - 0)
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and non-fraudulent, unlabeled claims connected to non-fraudulent, unlabeled claims
(0 - 0). We use m11, m10 and m00 to refer to the total number of dyads of each kind
present in the network and |E| = m11 +m10 +m00, where |E| denotes the number
of edges. ρ denotes the probability that two nodes are connected and is empirically
calculated in the network as

ρ =
2|E|

nC(nC − 1)
. (4.4)

If nodes are randomly connected to other nodes irrespective of their labels, the
expected values of m11 and m10 equal (Baesens et al., 2015)

m11 =
1nC(1nC − 1)ρ

2
and m10 = 1nC(nC − 1nC)ρ. (4.5)

We then calculate the dyadicity D and heterophilicity H of the network as

D =
m11

m11
, (4.6)

H =
m10

m10
. (4.7)

When D > 1, the network is dyadic and fraudulent nodes are more densely connected
to each other compared to what we expect by chance and D ≈ 1 corresponds to a
random network configuration. Here, ≈ denotes approximately equal to. We have
a heterophobic network if H < 1, indicating that fraudulent claims have fewer
connections to non-fraudulent claims than what is expected by chance. In a random
network configuration, H ≈ 1. In our fictive example depicted in Figure 4.1, the
network is dyadic (D = 2.5) and heterophobic (H = 0.28). Consequently, we can
infer that our network exhibits homophily as it displays both dyadicity (D > 1) and
heterophobia (H < 1). In this toy example, engineering features from the social
network potentially enables us to identify collaborating fraudsters that try to hide
their tracks.

BiRank algorithm In a homophilic network (i.e. where D > 1 and H < 1), we
can potentially uncover fraud by inspecting claims that are closer and more densely
connected to known fraudulent claims. To evaluate the proximity to fraudulent
claims, a suitable metric is needed. One effective approach is to employ the BiRank
algorithm (He et al., 2017). This algorithm is an extension of the personalized
PageRank algorithm (Page et al., 1999) and is specifically designed for bipartite
networks. Using BiRank, we rank claims with respect to their exposure to known
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fraudulent claims (Óskarsdóttir et al., 2022).

The scores of nodes ci and pj are calculated iteratively as

ci =

nP∑
j=1

wijpj and pj =

nC∑
i=1

wijci

where ci and pj denote the scores of nodes ci and pj , respectively. To ensure
convergence and stability, the scores are normalized using

ci =

nP∑
j=1

wij√
di
√
dj
pj and pj =

nC∑
i=1

wij√
di
√
dj
ci. (4.8)

This normalization lessens the contribution of high-degree nodes and gives better
quality results (He et al., 2017). To steer the scoring towards fraudulent claims, we
incorporate query vectors in the scoring process. These query vectors encode our
prior belief on the nodes’ importance. We use c0 and p0 to denote the query vectors
for the claims and parties, respectively. Further, c0i and p0j represent the individual
entries in the vectors c0 and p0. We adjust (4.8) to

ci = α

nP∑
j=1

wij√
di
√
dj
pj + (1− α)c0i and pj = β

nC∑
i=1

wij√
di
√
dj
ci + (1− β)p0j . (4.9)

where α ∈ [0, 1] and β ∈ [0, 1] are adjustable parameters. The values for α and β

regulate the relative emphasis given to the network structure and the query vector.
We rewrite (4.9) in matrix form

c = αSp+ (1− α)c0 and p = βST c+ (1− β)p0. (4.10)

Here, S = D
− 1

2

C WD
− 1

2

P denotes the symmetrically normalized weight matrix. We
start the algorithm by randomly initializing the ranking vectors c and p. Hereafter,
we iteratively compute the node scores until convergence.

We encode information about known fraudulent claims into the query vector c0

to rank the nodes’ scores towards fraudulent claims. When the claim is fraudulent,
we set c0i = 1 and c0i = 0 otherwise. We define p0 ≡ 0, since only claims can be
fraudulent and not parties. We set β = 1 since we do not include prior information
on the parties. We adjust (4.10) to

c = αSp+ (1− α)c0 and p = ST c.
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The iterative procedure to compute the fraud scores is summarized in Algorithm 3.
The BiRank algorithm stops when the difference between two successive iterations
is below a certain threshold or when we exceed the maximum number of iterations.

Algorithm 3: BiRank algorithm for computing fraud scores in a network
of insurance claims and parties (Óskarsdóttir et al., 2022). Adapted from
Algorithm 1 in He et al. (2017). We omit the query vector p0 and set β = 1.

Input: Weight matrix W , query vector c0 and hyperparameter α = 0.85;
Output: Ranking vectors c and p;
Symmetrically normalize W : S = D

− 1
2

P WD
− 1

2

C ;
Randomly initialize c and p;
while stopping criteria is not met do

c← αSp+ (1− α)c0;
p← ST c ;

return c and p;

Network featurization Next, we engineer several social network features from
the network structure, the labels and the scores resulting from the BiRank algorithm.
These features capture the information that is embedded in the network of the claims
and can be integrated into a tabular dataset alongside the individual characteristics
of each claim. The social network features then represent an additional source of
information that we can use in our fraud analytics models (see Section 4.2.1). We
divide the network features into two groups, the fraud-score based features and
the neighborhood based features (see Table 4.1). The results from the BiRank
algorithm are used to compute the fraud-score based features. Here, we look at the
claim’s fraud score and the distribution of the fraud scores in, for instance, its first
and second order neighborhood. To summarize these distributions, we can rely on
(robust) central tendency measures such as the median or midmean (Tukey, 1977).
Further, we engineer neighborhood based features that capture the surrounding
network structure of each claim. Here, we can compute the size of a claim’s first
and second neighborhood for instance.

4.2.3 Challenges within fraud analytics

When developing an analytic model for fraud detection, we encounter several chal-
lenges that are inherent to research on fraud. One of the main challenges is the
infrequent nature of fraud, which leads to highly imbalanced data sets (Baesens
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Table 4.1: Fraud-score and neighborhood based features, partially based on the feature engineering process from Óskarsdóttir et al.
(2022).

Name Order Description

Fr
au

d-
sc

or
e

scores0 0 The node’s fraud score as determined via BiRank
n1.q1 1 The first quartile of the empirical distribution of the fraud scores in the node’s

first order neighborhood
n1.med 1 The median of the empirical distribution of the fraud scores in the node’s first

order neighborhood
n1.midmean 1 The midmean (or interquartile mean) of the empirical distribution of the fraud

scores in the node’s first order neighborhood
n2.q1 2 The first quartile of the empirical distribution of the fraud scores in the node’s

second order neighborhood
n2.med 2 The median of the empirical distribution of the fraud scores in the node’s

second order neighborhood
n2.midmean 2 The midmean (or interquartile mean) of the empirical distribution of the fraud

scores in the node’s second order neighborhood

N
ei

gh
bo

rh
oo

d

n1.size 1 The number of nodes in the node’s first order neighborhood
n2.size 2 The number of nodes in the node’s second order neighborhood
n2.ratioFraud 2 The number of known fraudulent claims in the node’s second order

neighborhood divided by n2.size
n2.ratioNonFraud 2 The number of known non-fraudulent claims in the node’s second order

neighborhood divided by n2.size
n2.binFraud 2 A binary value indicating whether there is a known fraudulent claim in the

node’s second order neighborhood
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et al., 2015; Jensen, 1997; West and Bhattacharya, 2016; Thabtah et al., 2020). This
imbalance creates a bias towards the majority class for certain analytic techniques,
resulting in compromised fraud detection performance. Within fraud research, we
commonly tackle the class imbalance problem by employing resampling techniques
such as under- and over-sampling, SMOTE or ROSE (Baesens, 2023; Subudhi and
Panigrahi, 2020; Sundarkumar and Ravi, 2015; Van Vlasselaer et al., 2016; Óskars-
dóttir et al., 2022). A second challenge is the dynamic nature of fraud (Baesens
et al., 2015; Baesens, 2023; West and Bhattacharya, 2016). To remain undetected,
fraudsters continuously adapt their behavior and tactics. Consequently, it is essential
to detect fraud as soon as possible and to tweak or rebuild the fraud detection model
when necessary. Hereto related is the computational efficiency of the fraud detection
model (Baesens et al., 2015; West and Bhattacharya, 2016) which represents yet an-
other challenge. With the rapid advancement of machine learning, new methods are
constantly emerging, adding to the ever-growing repertoire of techniques available.
Further, given the high cost of fraud, it is crucial to detect fraudulent activities
instantly. Existing analytic methods for fraud detection are predominantly evaluated
based on their accuracy, often overlooking the aspect of computational efficiency. For
an accurate and reliable comparison of competing methods, it is essential to evaluate
their performance on a set of benchmark data sets. Most studies, however, do not
share their data sets due to their sensitive nature. The lack of publicly available
data hinders the reproducibility of research (Baesens, 2023) and gives rise to a fifth
challenge (Pourhabibi et al., 2020; West and Bhattacharya, 2016). The sixth and
final challenge arises from the disproportionate misclassification cost and the specific
performance criteria to evaluate the model (West and Bhattacharya, 2016; Baesens,
2023). Analytic fraud models are commonly assessed using performance measures
that evaluate the predictive performance. Notwithstanding, wrongly classifying
claims has financial implications. Depending on the allocated budget for the fraud
investigation process, wrongly classifying a fraudulent claim as legitimate can be
considerably more expensive than the reverse. Consequently, it might be more
appropriate to compare models in terms of their monetary performance (Baesens,
2023).

4.3 Simulation engine

Our proposed simulation engine addresses one of the key challenges within fraud
research. That is, the limited availability of publicly accessible data. In this section,
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we provide an in-depth overview of the data generation process and the architecture
of the simulation engine. We outline the sequential steps taken to generate a realistic
and representative insurance fraud network data set.

The resulting synthetic data set is structured in a tabular format, with each row
representing a unique claim and its corresponding attributes. The columns in the
data set capture items such as policyholder characteristics, traditional claim features,
involved parties and social network features. These are the attributes typically used
for fraud analytics. Further, for each claim we have two different types of labels.
The first is the true label of the claim, indicating if it is fraudulent or not. This
label is determined by the fraud generating model. The second type of label is the
outcome of the fraud investigation, which can either take on the value fraudulent,
non-fraudulent or uninvestigated. This variable is typically the one we have available
in insurance fraud data sets.

Implementation The simulation engine is available as open-source R package on
Github at https://github.com/BavoDC/iFraudSimulator. An extensive overview
of the default configuration is described in Appendix C.1 as well as in the package’s
documentation.

Architecture We generate a synthetic, tabular data set in seven consecutive steps
(see Figure 4.2). We start by generating the policyholder characteristics (step 1).
Hereafter, we simulate the contract-specific attributes per policyholder (step 2). We
use the policyholder and contract-specific features as input for our data-generating
claim frequency model and generate the number of claims per contract (step 3). Next,
we simulate the individual claim amounts using a data-generating claim severity
model (step 4). Similarly to step 3, we use the policyholder and contract-specific
characteristics as input for the data-generating model. Subsequently, we combine all
simulated claims and their characteristics into a tabular data set and we proceed
with the observations that have at least one claim. In step 5, we generate the
network structure of the claims by connecting each claim to different types of parties.
Next, we engineer the social network features and generate the claim labels which
represent the ground truth of the claim (i.e. fraudulent or non-fraudulent). We
replicate the fraud investigation process in step 6. Hereby, we generate the label
that is commonly available in fraud data sets (see Section 4.2). This label expresses
whether the claim has been investigated for fraud and what the outcome of that
investigation was. We conclude the synthetic data generation with step 7 where we

https://github.com/BavoDC/iFraudSimulator
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merge all simulated data.

The simulation engine offers a range of customizable features. In all seven steps,
several parameters can be adjusted. Moreover, it allows for dependencies between
certain features. For example, we can specify a negative dependence between the age
and the value of the car. Consequently, older cars will be characterized by a lower
value. By allowing for dependencies between features, the synthetic data captures
more realistic and nuanced relationships among variables and more closely mirrors
real-world data sets. Following, we discuss the seven consecutive steps in detail.

4.3.1 Policyholder and contract-specific characteristics

Prior to the synthetic data generation, the user can adjust several parameters
that determine the characteristics of the synthetic data (see Appendix C.1 for the
default configuration). Hence, the user has full control over the data-generating
mechanics. One of the adjustable parameters is the number of policyholders nph,
which determines the size of the resulting data set. By default, nph = 10 000. We
use i = 1, . . . , nph as an index for the policyholders. In addition to nph, the user can
also specify the total number of experts nexp, garages ngar, brokers nbro and other
person(s) involved in the claim nper. These parameter values will govern the size of
the social network.

We start the synthetic data generation by simulating the policyholder charac-
teristics for nph policyholders (step 1 in Figure 4.2). Here, we generate features
such as the age and gender of the policyholder and the number of contracts. We
use NrContractsPHi to denote the number of contracts of policyholder i and use
j = 1, . . . , NrContractsPHi as an index for the contracts. Per policyholder, we also
generate the number of years since the inception of the first contract and refer hereto
as the exposure wi. By default, we set the average exposure to five years and the
maximum to 20 years. Additionally, we simulate the contract-specific exposure wij .
In the synthetic data set, we consolidate the multiple years of coverage into a single
contract to simplify the data structure and analysis. That is, by default we allow
wij > 1. Table 4.2 gives an overview of the different attributes that are generated.
The first column in this table depicts the variable name, the second the variable
type and the third column contains the feature description. The last column of
Table 4.2 specifies which generator is used to simulate the feature values. For certain
features, the user can specify the range of the feature values. When generating the
data, we ensure that all simulated values fall within this prespecified range (see
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Figure 4.2: Roadmap of the simulation engine.
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Table 4.2: The policyholder and contract-specific characteristics, along with the generator used to simulate the feature values.

Variable Type Description Generator
P
ol

ic
yh

ol
de

r

IDPH Continuous Unique ID to identify the policyholder (index i = 1, . . . , nph)
AgePH Continuous Age of the policyholder in years. Default range is [18, 80] N (40, 15)
GenderPH Categorical Gender of the policyholder: female (ui ⩽ 0.28), male (ui > 0.29)

or non-binary (0.28 ⩽ ui ⩽ 0.29)
ui ∼ U(0, 1)

ExpPH Continuous Time since inception of the first contract of the policyholder, in
years

N (5, 1.5)

RateNrContracts Continuous Rate parameter λi for generating the number of contracts λi = 0.25(1.05− 2.5× 10−6 × AgePHi +
0.0025× AgePH2i − 2.65× 10−5 × AgePH3i )

NrContractsPH Ordinal Number of contracts. Default range is [1, 5] Poi(λi)

C
on

tr
ac

t-
sp

ec
ifi

c

ContractID Continuous Unique ID to identify the contract (index j = 1, . . . ,
NrContractsPHi)

ExpPHContracts Continuous Duration or exposure of the contract, in years if NrContractsPHi > 1:
ExpPHi− U(0, ExpPHi/2)

else:
ExpPHContractsij = ExpPHi

AgeCar Continuous Age of the vehicle in years max(N (7.5,
√
5), ExpPHContractsij)

OrigValueCar Continuous Original value of the vehicle Exp(λi/NrContractsPHi)υ
ValueCar Continuous Current value of the car OrigValueCarij(1− δ)AgeCarij

Coverage Categorical Type of coverage provided by the insurance company: Multinomial(1, πTPL, πPO, πFO)
TPL = only third party liability, (see Appendix C.3)
PO = partial omnium = TPL + limited material damage,
FO = full omnium = TPL + comprehensive material damage.

Fuel Categorical Type of fuel of the vehicle: Gasoline/LPG/Other (0) or Diesel (1) Bernoulli(0.3)
BonusMalus Ordinal Level occupied in bonus-malus scale of the insurance company ⌊G(1, 1/3)⌋

C
la

im

ClaimAge Integer Number of months from beginning of contract to the date of the
incident

min(⌊Exp(0.25)⌋, ⌊ExpPHContractsij ∗
12⌋)

ClaimDate Continuous Number of years between the start of the contract and the max(U(0, ExpPHContractsij),
claim’s filing date ClaimAgeijk/12)

Police Categorical Whether police was called when the incident happened: no (0) or
yes (1)

Bernoulli(0.25)

nPersons Integer Number of other persons involved in the claim (see Section 4.3.3).
Range is [0, 5]

S
πp←−− x

N denotes the normal distribution, U the uniform distribution, Poi the Poisson distribution, G the Gamma distribution and Exp denotes the
exponential distribution. υ = 25 × 103 if GenderPHi = male, υ = 20 × 103 if GenderPHi = female and υ = 22.5 × 103 if GenderPHi = non-binary. δ

is the depreciation rate (see Table 4.3). We use ⌊·⌋ to depict the floor function. S
πp←−− x denotes that a random sample x is drawn from the set

S = (0, 1, 2, 3, 4, 5) with corresponding probability πp = (0.025, 0.6, 0.2, 0.1, 0.1, 0.025).
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Appendix C.2). Hereby, we avoid generating implausible or invalid values. For the
policyholder’s age, for example, the default range is [18, 80]. Consequently, none of
the policyholders will be younger than 18 (the legal driving age in many countries)
or older than 80. Once all policyholder characteristics are generated, we proceed
to simulate the contract-specific features such as the age of the car and the type of
coverage (see Table 4.2).

Dependence structure The simulation engine allows to specify a dependency
between different features. To generate the dependency, we rely on copulas (Denuit
et al., 2005). In our simulation engine, we restrict ourselves to the bivariate Ali-
Mikhail-Haq (AMH) (Kumar, 2010) and Frank copula (Denuit et al., 2005). We use
θ to denote the parameter that controls the dependence.

Table 4.3 presents an overview of the dependencies and the method used to
incorporate them. Within insurance, we commonly have variables that are correlated
(Goldburd et al., 2016). Consequently, by allowing for dependencies, we can create
a more realistic data set. For example, in real life data sets we commonly observe
that older cars are worth less compared to newer cars. In our engine, we incorporate
this negative dependency between the age of the car and its value by using a Frank
copula with θ = −25.

Table 4.3: Overview of the dependencies between the variables.

Variables Dependency
AgePH and GenderPH Weak negative dependence, introduced using

AMH copula with θ = −0.15
AgePH and ExpPH Weak positive dependence, introduced using

AMH copula with θ = 0.15
AgePH and NrContracts Convex function (see Table 4.2) and positive

dependence between AgePH and NrContracts,
introduced using AMH copula with θ = 0.95

AgeCar and OrigValueCar Negative dependence, introduced using Frank
copula with θ = −25

OrigValueCar and ValueCar The depreciation rate δ = 0.15 for cars whose
original value < 30 000 and δ = 0.075 when
the original value ⩾ 30 000 (see Table 4.2
and Storchmann (2004)).

Coverage and ValueCar, AgeCar,
AgePH

A dependency is introduced using a
multinomial logistic regression model (see
Appendix C.3)
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4.3.2 Claim frequency and claim severity

Next, we proceed to simulating the number of claims Nij for policyholder i on
contract j and the individual claim costs Lijk. We use k = (1, . . . , Nij) as an index
for the claims. Hereto, we employ the frequency-severity approach (Ohlsson and
Johansson, 2010; Frees et al., 2014) where we model the claim frequency and claim
severity separately. To simulate the number of claims and the claim costs as a
function of the policyholder and contract-specific characteristics, we rely on the
generalized linear model (GLM) framework (McCullagh and Nelder, 1999). We use
a Poisson GLM with log link as the data-generating model for the number of claims
(Ohlsson and Johansson, 2010; Quijano Xacur and Garrido, 2015)

Nij ∼ Poi(wij exp(cfx
⊤
ijβcf )). (4.11)

To generate Nij , we take a random draw from Poi(wij exp(cfx
⊤
ijβcf )), with cfxij

the covariate vector and βcf is the corresponding parameter vector. The exposure
wij of the contract is included as an offset term and the subscript cf stands for
claim frequency. In our simulation engine, the user can specify which features
should be included in cfxij and the features’ effect size can be adjusted via βcf . As
such, the user can control the relation between the Nij ’s and the policyholder and
contract-specific characteristics (see Appendix C.4 for the default specification of
the claim frequency model).

Hereafter, we generate the claim-specific characteristics (see Table 4.2). For
example, we simulate the duration in months since the beginning of the contract
until the date of the incident. Hereby, we create the claim-specific information that
is typically available in fraud insurance data sets and that is used in fraud detection
models (see, for example, Óskarsdóttir et al. (2022)).

Next, we proceed with generating the cost Lijk of claim k under contract j of
policyholder i. The data-generating model for the claim amounts Lijk is driven by
a gamma GLM with log link

Lijk ∼ G(α, α/ exp(csx⊤ijβcs +Nijζ)) (4.12)

where G denotes the gamma1 distribution and α the shape parameter, which we set
to 0.25. The subscript cs stands for claim severity and the parameter ζ controls

1For the gamma distribution, we use the parameterization with the density function f(x) =
ταxα−1 exp(−τx)/Γ(α) where τi = α/ exp(csx⊤

ijβcs+Nijζ) and Γ(·) denotes the gamma function.
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the dependency between the claim frequency and claim severity (Frees et al., 2011;
Garrido et al., 2016). Within the frequency-severity approach, we commonly assume
that ζ = 0 (i.e. the claim frequency and claim severity are independent). We specify
50 as a lower limit for Lijk to prevent generating implausible low claim amounts.
Consequently, when Lijk < 50 we replace it with a randomly drawn value from
U(50, 150) to ensure that a low yet realistic claim amount is generated. As with the
data-generating claim frequency model (see equation (4.11)), we can specify which
features are included in csxij as well as their effect size via βcs (see Appendix C.4
for the default model specification).

4.3.3 Constructing the social network structure and simulat-
ing fraudulent claims

Our next objective is to generate the social network structure that links claims
to parties and to other claims. Within motor insurance each claim is linked to a
policyholder and a garage. Other parties involved in the claim may include brokers
and persons other than the policyholder. Experts are involved in the process only
when the claim amount exceeds a certain threshold (KBC Brussels, n.d.). Insurance
companies commonly handle minor losses without the involvement of an expert to
inspect the damage or injury. Our goal is to enhance the simulated claims with a
network structure similar to the one depicted in Figure 4.3(a). In this figure, the
circles depict claims and the rectangles parties.

To accomplish this, we create a set Ap for each party type, such as the set of
garages Ag, brokers Ab, experts Ae, and other persons Ao. These sets represent the
specific parties of each type within the larger set of all possible parties, denoted
as P = Ag ∪ Ab ∪ Ae ∪ Ao. The size of a specific set Ap is determined by the
corresponding user-specified parameter (see Section 4.3.1 and Appendix C.1). For
example, if the number of garages ngar is set to 150, the simulation engine will
create a set Ag of 150 unique garages. For each claim, we then randomly select one
(or multiple when we connect the claim to other persons, see Table 4.2) member
from Ap to link the claim to a specific party. By repeating this procedure for each
type of party, we create a social network structure where every claim is connected to
different (types of) parties (see Figure 4.3(a)). As a rule, we do not link the claim
to an expert when Lijk < 250 (KBC Brussels, n.d.).

Next, we proceed with generating the claim label. The data-generating fraud
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Figure 4.3: Example of a social network structure, which illustrates the desired connectivity we want to obtain in our synthetic data
set. Each claim is linked to specific parties, and as a result, claims that share the same party are connected to each other
in the network. The rectangles depict the parties and the circles the claim. Red claims are fraudulent claims, green claims
legitimate claims and the gray claims represent unlabeled claims.
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model is a logistic regression model

Yijk ∼ Bern (πijk) and πijk =
e0βf+fx

⊤
ijkβf

1 + e0βf+fx⊤
ijkβf

. (4.13)

Here, Bern denotes a Bernoulli distribution and Yijk is a binary variable indicating
if the kth claim of the jth contract of policyholder i is fraudulent (Yijk = 1) or not
(Yijk = 0). The subscript f stands for fraud and 0βf is the intercept term. The
relation between the fraud label and the features is adjusted via the covariate vector

fxijk and the parameter vector βf (see Appendix C.5 for the default specification).
In the default model specification, there are no interaction terms or non-linear effects.
To introduce interactions between covariates, we include the interactions in the
model formula (equation (4.13)) while non-linear effects can be incorporates using
splines. (Wood, 2011, 2017).

We generate the claim labels in an iterative manner and this process is visualized
in Figure 4.3. In this figure, the label of the claims is color-coded. Gray stands for
unlabeled, red for fraudulent and green for non-fraudulent. Panel (a) represents the
network at initialization, when all claims are unlabeled. We have no fraud-related
information at this point and hence, no values for the social network features that
rely on this information (e.g., the ratio of known fraudulent claims in the second
order neighborhood). Consequently, at initialization, we remove all fraud-score and
neighborhood based features (see Table 4.1) from fxijk and βf in (4.13). Next,
we take a random subset, equal in size to 1% for example, of all simulated claims.
By deliberately taking a small subset of the data, we ensure that only a limited
proportion of the claim labels is generated without effect of the fraud-score and
neighborhood based features. In Figure 4.3(a), this subset consists of claims C1,
C2 and C3. To generate the claim labels, we take a random draw from Bern(πijk)
(see (4.13)). As such, we generate our first set of labeled claims (see Figure 4.3(b)).
This enables us to compute the values for the fraud-score and neighborhood based
features. Consequently, from here on out, we include these features in fxijk and βf .
To generate the labels of the remaining claims, we again take a random subset of
unlabeled claims. In Figure 4.3(b), this subset corresponds to claims C5 and C6.
The size of this random subset can be set by the user. By default, this is equal to
10% of all simulated claims. We combine this subset with the unlabeled claims in the
2nd order neighborhood of the fraudulent claims in the previous iteration (i.e. C4 in
Figure 4.3(b)). In doing so, we ensure that every subset includes unlabeled claims



Simulation engine 115

that are connected to fraudulent claims and that we propagate fraud through the
network. We engineer the social network features for all claims in the subset and we
take random draws from Bernoulli(πijk) to generate the claim labels (Figure 4.3(c)).

Algorithm 4 is a generalization of the process illustrated in Figure 4.3. We use
this iterative algorithm to simulate the claim labels Yijk and each iteration consists of
three steps. First, we take a random subset of the unlabeled claims and we combine
this subset with all unlabeled claims in the 2nd order neighborhood of the fraudulent
claims in the previous iteration. Second, we engineer the social network features
for all claims in the subset. Third, we take random draws from Bernoulli(πijk) to
generate the claim labels (Figure 4.3(c)). This concludes one iteration and we repeat
the algorithm until all claims are labeled.

Algorithm 4: Iterative algorithm to simulate the claim labels
Model: Yijk ∼ Bern(πijk)
Initialization: Remove fraud-score and neighborhood based features from

(fxijk,βf ) in the first iteration and generate the initial
claim labels using (4.13)

repeat
1 Take a subset of the simulated database: a random sample of unlabeled

claims combined with the unlabeled claims in 2nd order neighborhood of
fraudulent claims in the previous iteration;

2 Construct the social network features for the claims in this subset;
3 Generate the claim label using the data-generating logistic regression

model in (4.13) ;
until all claims are labeled ;

The user can specify which features are included in fxijk and determine their
effect size in βf . Consequently, the user has the flexibility to activate or deactivate
specific feature effects and to control their strength. By including social network
features in fxijk and via the specified effect size in βf , for example, we determine
to which extent the network exhibits patterns of homophily. The greater the
corresponding effect size in βf , the more densely connected fraudulent claims will
be. Conversely, we can turn off the social network effect by omitting the social
network features from fxijk. Further, we can set the desired level of class imbalance.
Hereto, our simulation engine determines which value for 0βf results in the target
class imbalance (see Appendix C.5 for detailed information).
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4.3.4 Replicating the expert-based fraud detection approach

In a real life fraud data set, we typically have historical, labeled data that is the result
of an investigation by a fraud expert (see Section 4.2.1). In our simulation engine, we
replicate the two steps of this fraud detection approach to obtain these labels. First,
we flag claims as suspicious based on a set of business rules which can be defined by
the user. Hence, an alert will be triggered for claims that meet the criteria outlined
in the business rules. By default, we flag claim k under contract j of policyholder i
as suspicious if it satisfies one of the following criteria: a) the claim is filed within
one year of the most recent claim (i.e. ClaimDateijk − ClaimDateij(k−1) ⩽ 1); b)
the individual claim amount Lijk > 75% of ValueCarijk or c) the cumulative claim
amount

∑k
l=1 Lijl > 200% of ValueCarijk. In reality, these claims are passed to

an expert who performs an in-depth investigation. Following the investigation, the
expert judgement determines whether the claim is legitimate or not. We simulate
the expert judgement in the second step as follows. For a claim that is flagged
by the business rules in step one, we first look at its ground truth label Yijk. If
Yijk = non-fraudulent, we take a random draw from Y expert

ijk ∼ Bern(0.01). Hence,
when the claim is legitimate, we have a 99% probability that the expert will label
the claim as non-fraudulent. Conversely, if Yijk = fraudulent, we randomly draw
from Y expert

ijk ∼ Bern(0.99). Thus, for fraudulent claims, there is a 99% probability
that the expert will classify them as fraudulent as well. Further, claims that are
not flagged by the business rules obtain the label uninvestigated. Hereby, we
create all three labels that are typically available in an insurance fraud data set:
non-fraudulent, fraudulent or uninvestigated. By following the procedure as
outlined above, we acknowledge and reflect the inherent missing information and
uncertainties that exist in real-life data. That is, the expert-based approach is not
entirely infallible (Baesens et al., 2015). Claims that are judged to be non-fraudulent
by the investigation may in reality be fraudulent and vice versa. In addition, we
acknowledge and replicate the phenomenon of having a substantial proportion of
uninvestigated claims that are unlabeled. However, with a sensitivity and specificity
of 99% we assume nearly perfect judgement. To allow for other scenarios, we allow
users to define both the sensitivity and specificity of the expert judgment. As such,
users can regulate the precision of the expert.
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4.4 Generating synthetic fraud network data: illus-

trations

In this section, we illustrate the capabilities of our simulation engine. We specifically
highlight the impact of social network features on the resulting synthetic data sets.
Hereto, we generate and analyze two different types of data sets. One where we
include a moderately strong social network effect and one where we exclude it.
Additionally, we provide an illustrative example of the construction and evaluation
of a fraud detection model using a synthetically generated data set. We explore to
which extent the constructed model is able to identify fraudulent claims that are
not investigated and labeled by the expert.

4.4.1 The impact of social network features on the synthetic
data

We generate two different types of data sets. In the first type of data set we
introduce a moderately strong social network effect in the claim label generation
(see Section 4.3.3). We denote this type of data set as DNetwork. Table 4.4 depicts
the specification of the effect sizes used in the simulation of DNetwork. We include
various types of features to generate a realistic and representative synthetic data
set. These features encompass the policyholder, claim-specific, and social network
characteristics. In order to replicate the social dynamics of fraud, we assign a strong
effect size for the social network features n1.size, n2.size and n2.ratioFraud.
Hereby, we create a synthetic data set where the network structure exhibits patterns
of homophily. Conversely, in the second type of data set DNon−network, we exclude
all network-related features from the data-generating fraud model (see Table 4.4).
As such, we create a data set where fraud is not influenced by social interactions
or network dynamics. The claim label generation is solely driven by policyholder
and claim-specific characteristics. The selected set of policyholder and claim-specific
features is identical in DNetwork and DNon−network, as well as the effect sizes of
these features (see Table 4.4).

For both types of data sets, the number of policyholders is set to 200 000 and
the target class imbalance (i.e. the ratio of the number of fraudulent claims to the
total number of claims) to 2%. All other settings remain at their default values (see
Appendix C.1). We generate 100 data sets of each type and explore the distribution of
the claim labels across these simulated data sets. Hereto, we calculate the frequency
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Table 4.4: Specification of the data-generating fraud model in DNetwork and
DNon−network. We generate the claim label Yijk by taking a random draw
from Bern (πijk) where πijk = exp(0βf + fx

⊤
ijkβf )(1+exp(0βf + fx

⊤
ijkβf ))

−1.

βf

Feature DNetwork DNon−network

Policyholder:
AgePH -2.00 -2.00
NrContractsPH -1.50 -1.50

Claim-specific:
ClaimAmount 0.20 0.20
ClaimAge -0.35 -0.35

Social network:
n1.size 2.00 0
n2.size -2.00 0
n2.ratioFraud 3.00 0

Table 4.5: The average, minimum and maximum frequency and relative frequency (%) of
the ground truth and expert-based claim labels across the 100 synthetic data
sets.

Frequency (%)

Average Minimum Maximum

D
N

e
tw

o
r
k

Yijk:
- Fraudulent 2 175.37 (2.01%) 2 121.00 (1.97%) 2 219.00 (2.06%)
- Non-fraudulent 105 937.66 (97.99%) 105 103.00 (97.94%) 106 655.00 (98.03%)

Y
expert
ijk :
- Fraudulent 284.28 (0.26%) 260.00 (0.24%) 318.00 (0.30%)
- Non-fraudulent 9 149.38 (8.46%) 8 952.00 (8.30%) 9 431.00 (8.67%)
- Uninvestigated 98 679.37 (91.27%) 98 021.00 (91.08%) 99 428.00 (91.45%)

D
N

o
n
−
n
e
tw

o
r
k Yijk:

- Fraudulent 2 175.84 (2.01%) 2 139.00 (1.98%) 2 209.00 (2.04%)
- Non-fraudulent 105 921.40 (97.99%) 104 978.00 (97.96%) 106 789.00 (98.02%)

Y
expert
ijk :
- Fraudulent 293.64 (0.27%) 254.00 (0.24%) 335.00 (0.31%)
- Non-fraudulent 9 137.37 (8.45%) 8 924.00 (8.29%) 9 454.00 (8.72%)
- Uninvestigated 98 666.23 (91.28%) 97 826.00 (91.01%) 99 366.00 (91.45%)

and relative frequency of the Yijk categories (i.e., fraudulent and non-fraudulent)
and Y expert

ijk (i.e., fraudulent, non-fraudulent, and uninvestigated) in each
data set. The average, minimum, and maximum values for both the frequency and
relative frequency are computed and presented in Table 4.5. In all synthetic data
sets, the empirical class imbalance is nearly identical to the target class imbalance.
The minimum class imbalance in DNetwork is 1.97% and the maximum 2.06%.
In DNon−network, the minimum is 1.98% and the maximum is 2.04%. The class
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imbalance is also reflected in the expert judgement. Only a small fraction of claims
are subject to investigation (approximately 9%), and among those investigated, only
a minority are found to be fraudulent. Further, the empirical distributions of both
Yijk and Y expert

ijk are similar across all simulated data sets.

Empirical distribution of the features Figures 4.5 and 4.6 present the empiri-
cal distribution of the features included in the data-generating fraud models (see
Table 4.4) of one synthetically generated data set. Figure 4.5 displays the features’
empirical distribution in a simulated data set DNetwork. Figure 4.6 shows this in
a synthetic data set DNon−network. The empirical distribution of policyholder and
claim-specific features is different across fraudulent and non-fraudulent claims in
both types of data sets. For example, fraudulent claims are mostly associated with
younger policyholders (top left plot on Figures 4.5 and 4.6). Further, in DNetwork, the
difference in the empirical distribution between fraudulent and non-fraudulent claims
is also present for the social network features n1.size, n2.size and n2.ratioFraud.
This suggests that the claim labels are linked to these features in DNetwork. In
contrast, the empirical distributions of the social network features do not differ in
DNon−network, indicating that there is no association between these features and
the claim label.

Homophily Figure 4.4 illustrates the dyadicity D and heterophilicity H observed
in the simulated data sets (see Section 4.2.2). In DNetwork, the fraudulent claims
are more densely connected to each other compared to what we expect by chance
(D > 1). In addition, fraudulent claims have fewer connections to non-fraudulent
claims relative to what we expect by chance (H < 1). In comparison, we observe
no patterns of homophily in DNon−network. Both the dyadicity (D ≈ 1) and
heterophilicity (H ≈ 1) correspond to values indicative of a random network
configuration.

Effect size of the features Next, we estimate the coefficient vector βf in each
synthetic data set. We fit the following logistic regression model

logit(E[Yijk]) = 0βf + 1βfAgePHi + 2βfNrContractsPHij + 3βfClaimAmountijk

+ 4βfClaimAgeijk + 5βfn1.sizeijk + 6βfn2.sizeijk

+ 7βfn2.ratioFraudijk.
(4.14)
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Figure 4.4: The empirical distribution of the dyadicity and heterophilicity in the synthet-
ically generated DNetwork and DNon−network data sets.

where i refers to the policyholder, j to the contract and k to the claim. This
model is the same as the data-generating fraud model (see Table 4.4). Figure 4.7
depicts the empirical distribution of the estimated coefficient vector β̂ across the
100 simulated data sets. Panel (a) shows the estimates obtained from DNetwork

and panel (b) from DNon−network. In both types of data sets, we observe some
minor deviations from the specified effect size for most features, reflecting sampling
variability. Further, the variability of the estimates is relatively small. Hence, we are
able to accurately replicate the specified effect size for the different features, with only
minor deviations due to sampling variability. The deviation from the specified effect
size and variability, however, is substantially larger for the social network feature
n2.ratioFraud. This feature represents the proportion of fraudulent claims in a
claim’s second order neighborhood. The estimated effect size of n2.ratioFraud is
lower than its value as specified in βf . This is most likely attributable to the iterative
growth in the number of fraudulent claims (see Algorithm 4), leading to a deviation
in the estimated effect size from the originally specified value. In the first iterations,
there are only a few instances of fraudulent claims. Hence, most of the unlabeled
claims will have similar values for n2.ratioFraud. As the number of iterations
increases, there will be a progressive increase in the proportion of fraudulent claims
(see Appendix C.6). Accordingly, there will be more distinct feature values for
n2.ratioFraud. Thus, the empirical distribution of n2.ratioFraud alters with
each iteration.
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Figure 4.5: Illustration of the features’ empirical distribution in a synthetically generated DNetwork.
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Figure 4.6: Illustration of the features’ empirical distribution in a synthetically generated DNon−network.
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Figure 4.7: Empirical distribution of the coefficient estimates across the (a) 100 simulated
data sets DNetwork and (b) 100 simulated data sets DNon−network. The red
lines on the plot depict the features’ effect size as specified in βf .

4.4.2 Exploring the capabilities of the simulation engine: eval-
uating a fraud detection model’s effectiveness

In this section, we illustrate the development and validation of a fraud detection
model using a supervised learning technique (see Section 4.2). We proceed with the
100 synthetic data sets DNetwork. In each simulated data set we construct a fraud
detection model by fitting a logistic regression model to the investigated claims (i.e.
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those that are investigated and labeled by the expert, see Section 4.3.4). We rely
on logistic regression given its robustness to imbalanced class sizes (Oommen et al.,
2011; Marques et al., 2013; van den Goorbergh et al., 2022). Table 4.5 illustrates that
said imbalance is present in each synthetic data set. To examine the added value
of social network analytics when a network effect is present, we define two distinct
model specifications. For model 1, we only include policyholder and claim-specific
features

logit(E[Yijk]) = 0βf + 1βfAgePHi + 2βfNrContractsPHij + 3βfClaimAmountijk

+ 4βfClaimAgeijk.
(4.15)

Next, we extend model 1 by incorporating social network features as well, resulting
in model 2

logit(E[Yijk]) = 0βf + 1βfAgePHi + 2βfNrContractsPHij + 3βfClaimAmountijk

+ 4βfClaimAgeijk + 5βfn1.sizeijk + 6βfn2.sizeijk

+ 7βfn2.ratioFraudijk.
(4.16)

To assess the predictive performance of the fraud detection models, we rely on the
area under the receiver operating characteristic curve (AUC) (Hanley and McNeil,
1982) and the top decile lift (TDL) (Lemmens and Croux, 2006). The AUC measures
how well the model differentiates between fraudulent and non-fraudulent claims. An
AUC of 0.5 corresponds to a random model and a perfect model has an AUC of
1. The TDL measures the extent to which a model surpasses a random model in
detecting fraudulent claims. We calculate the TDL by dividing the proportion of
fraudulent claims among the top 10% of claims with the highest predicted probability
by the relative frequency of fraudulent claims in the data set. The TDL of a random
model is equal 1. The higher the TDL, the better the model performance.

In each synthetic data set, we examine the in- and out-of-sample predictive
performance of the fitted model. Hereto, we use the model fit to compute the
probability of fraud for claims in the in- and out-of-sample data set

πijk =
e0β̂f+fx

⊤
ijkβ̂f

1 + e0β̂f+fx⊤
ijkβ̂f

. (4.17)

The in-sample data set consists of the investigated claims (approximately 9% of
all claims are investigated, see Table 4.5). Here, we use the labels of Y expert

ijk as



Discussion 125

outcome when computing the performance measures. The out-of-sample data set
contains all uninvestigated claims. In our synthetic data set, we have the advantage
of having access to the ground truth label Yijk of the uninvestigated claims, which
is not available in real-life data sets. We calculate the out-of-sample AUC and TDL
using Yijk. As such, we evaluate to which extent our model is able to generalize and
detect fraud in the unlabeled claims.

Figure 4.8 depicts the in- and out-of-sample predictive performance of model 1
and model 2. In terms of AUC and TDL, model 2 consistently outperforms model 1
in both the in- and out-of-sample evaluations. Consequently, by incorporating social
network features in addition to the traditional claim characteristics, we enhance
the model’s ability to identify fraudulent claims. Furthermore, the TDL of model
1 approaches one in all simulated data sets, indicating that the model performs
no better than random chance in identifying fraudulent claims within the top 10%
of predicted probabilities. In comparison, the TDL of model 2 is substantially
larger than one. Model 2 also retains its predictive performance on the out-of-
sample data sets. Hence, by training the model on the investigated claims, we
can effectively capture the distinct patterns exhibited by fraudulent claims. One
seemingly contradictory finding, however, is that the out-of-sample AUCs are higher
than the in-sample AUCs. This discrepancy in performance is likely due to the
different labels used for model evaluation. For the in-sample comparison, we rely on
the expert judgment labels Y expert

ijk . Conversely, for the out-of-sample comparison we
use the ground-truth labels Yijk. This variation in label sources may contribute to the
observed differences in model performance. In addition, the in-sample data sets are
10 times smaller than the the out-of-sample data sets. Consequently, the in-sample
data sets exhibit more variability. Further, a small number of the investigated claims
will be false positives or false negatives (see Section 4.3.4). When we fit the models
with the ground truth-label Yijk instead of Y expert

ijk , the in-sample performance is
higher compared to the out-of-sample performance (see Appendix C.7).

4.5 Discussion

In this chapter, we present a powerful and flexible toolbox to generate synthetic
insurance fraud network data. The simulation engine consists of seven consecutive
steps which enable us to generate a complete and complex data set. The engine
generates policyholder characteristics, contract-specific features, the number of claims
and individual claim costs, and the claim labels (fraudulent or non-fraudulent). To
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Figure 4.8: Distribution of the performance measures across the 100 simulated data sets
DNetwork. The grey line in the plots corresponds to the performance of a
random model. The in-sample performance is evaluated using the labels of
the investigated claims. The out-of-sample performance is assessed using the
ground truth label Yijk of the uninvestigated claims.

ensure that the simulated data accurately reflects the real-world scenario, the fraud
investigation process is also replicated. The generated data from each step is
combined to produce a final synthetic database that can be used for various purposes.
In generating the synthetic data, the user has control over various data-generating
mechanisms.

The simulation engine can produce diverse scenarios to meet different research
needs. We showcase this ability by generating two distinct types of data sets, one
where the social network effect is present during the claim label generation and
one where it is absent. Our results highlight the toolbox’s capability to simulate
synthetic data according to the user-defined parameters. Our simulation engine
accurately generates the desired class imbalance as well as the specified effect sizes
of the covariates (including the social network features). As such, we are able to
generate data sets that closely mirror real-life insurance fraud data sets in motor
insurance.

Researchers can utilize our simulation engine to conduct benchmark studies,
aimed at addressing (methodological) challenges posed by insurance fraud. For
instance, future research can focus on the evaluation of sampling techniques to handle
the high class imbalance and the performance of learning methods in combination
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with said sampling techniques.





Chapter 5

Conclusions and outlook

This thesis focuses on the use of hierarchical and network data in predictive models
constructed for various insurance applications, ranging from detecting fraudulent
insurance claims to insurance pricing. Recent technological innovations have not only
facilitated the acquisition and storage of large data sets, but have also greatly en-
hanced the performance of various predictive modeling techniques. Notwithstanding,
several outstanding challenges remain. The research conducted in this thesis provides
a comprehensive exploration of two important challenges in insurance analytics and
proposes data-driven solutions to tackle them.

5.1 Hierarchical MLFs

The first two chapters are dedicated to incorporating hierarchical MLFs into an
insurance pricing model. In Chapter 2, we show that the random effects approach
is an efficient strategy to handle hierarchical MLFs. We provide a comprehensive
overview and comparison of existing estimation methods. Additionally, we present a
data-driven procedure to construct an insurance pricing model when both hierarchi-
cally structured and contract-specific risk factors are available. Further, our results
indicate that the Tweedie distribution is particularly well-suited for modeling and
predicting damage rates.

The proposed approach, however, is confined to regression-type random effects
models. Consequently, it shares the same drawbacks as GLMs. Variables have to
be explicitly selected, as well as interaction terms and non-linear transformations.
This is not the case for machine learning techniques, which partially explains why,

129
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in general, machine learning methods have a higher predictive performance than
the traditional GLMs. Currently, there exist a few machine learning techniques
that incorporate a random effects component. Sela and Simonoff (2012) devised
a framework and estimation method for tree-based methods with random effects.
Similarly, Avanzi et al. (2023), developed a combination of neural networks with
a random effects component. To the best of our knowledge, there is no existing
research on the performance of random effects machine learning techniques when
confronted with hierarchically structured risk factors. Hence, this is a possible
first path for future research. Subsequent studies can provide insights into whether
random effects machine learning methods share the same limitations as other random
effects models (e.g. the existence of negative variance estimates). Furthermore, the
random effects approach can be compared with alternative encoding methods, such
as target encoding (Micci-Barreca, 2001) or entity embeddings from neural networks
(Guo and Berkhahn, 2016).

In certain situations, the random effects approach is not feasible or appropriate.
This is the main topic of Chapter 3, where we provide an algorithm to reduce a
hierarchically structured risk factor to its essence. Using a combination of feature
engineering, clustering techniques and cluster evaluation criteria, the algorithm
groups similar categories at every level in the hierarchy. As such, the quality of the
final clustering solution is dependent on the latter components. Future research
can examine whether different features, clustering techniques and cluster evaluation
criteria lead to better clustering solutions. In addition, our algorithm works top-
down. Alternatively, researchers can design an algorithm that works bottom-up and
that is able to group child categories of different parent categories.

5.2 Social network data

The third and final chapter tackles the scarcity of publicly available insurance fraud
network data by introducing a simulation engine. Our engine is designed to generate
a wide range of scenarios that closely resemble real-life data sets. By enabling
users to specify the parameters of the data-generating mechanisms, we give them
control over the characteristics of the resulting synthetic data set. Additionally,
we demonstrate that the engine is able to generate synthetic data according to
parameters as defined by the user.

The simulation engine is designed as a tool for various research endeavors.
Consequently, a range of potential future research topics present itself, ranging from
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methodological studies to hands-on case studies. Our aim is to stimulate research
that examines several of the (methodological) challenges inherent to insurance fraud,
such as the class imbalance and handling missing data. Alternatively, synthetically
generated data sets can be used to examine and compare the accuracy in detecting
fraudulent claims of several predictive modeling techniques. As such, the simulation
engine can also serve as a tool to preselect a range of promising models that can
be tested on real-life data. Further, the simulation engine provides a means to
explore potential strategies for managing the dynamic and temporal nature of
fraudulent activities. By adjusting parameters within the simulation and mimicking
the fraudsters’ attempt to remain undetected by altering their tactics, researchers
can explore how different models respond to shifts in fraud dynamics. For example,
by changing the composition of the included covariates and the covariates’ effect size
in the data generating fraud model. This can potentially lead to the identification
of effective approaches for managing the evolving nature of fraudulent behavior.





Appendix Chapter 2

A.1 Jewell’s hierarchical model: variance estimators

In our analysis, we make use of the estimators proposed by Ohlsson (2005)
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I =

∑
j zj·(Ȳ

z
·j·· − Ȳ z

····)
2 − σ̂B2(J − 1)

z·· −
∑

j z2
j·

z··

,

(1)

where

Ȳ·j·· =

∑
k w·jk·Ȳ·jk·∑

k w·jk·
and Ȳ z

···· =

∑
j zj·Ȳ

z
·j··∑

j zj·
. (2)

In the above equations, Tjk denotes the number of observations in group (j, k), Kj

the number of branches in industry j and J the number of industries.
To estimate µ, we use

µ̂ =

∑
j qj Ȳ

z
·j··∑

j qj
. (3)
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A.2 Random effect estimates
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B.1 Distance and (dis)similarity metrics

Using clustering algorithms, we aim to divide a set of data points x1, . . . ,xJ into J ′

homogeneous groups such that observations in each cluster j′ are more similar to
each other compared to observations of other clusters j′ ̸= j′. Consequently, most
clustering algorithms rely on distance or (dis)similarity metrics between all pairwise
observations.

The most commonly used distance metric between two vectors xj and x j is the
squared Euclidean distance

de(xj ,x j) = ∥xj − x j∥22. (4)

Here, ∥xj∥2 :=
√
x2j1 + · · ·+ x2jnf

and nf denotes the number of features considered.
The squared Euclidean distance can be converted to the Gaussian similarity measure

sg(xj ,x j) = exp

(
−∥xj − x j∥22

σ2

)
(5)

which ranges from 0 (i.e. dissimilar) to 1 (i.e. identical). σ is a scaling parameter
set by the user (Ng et al., 2001; Poon et al., 2012). When σ is small, the distance
needs to be close to 0 to result in a high similarity measure. Conversely, for high σ,
even large distances will result in a value close to 1.

Ideally, vectors that lie close to each other are characterized by a low distance d(·, ·)
and a high similarity measure s(·, ·). Euclidean based distance/similarity measures,
however, are not appropriate to capture the similarities between embeddings (Kogan
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et al., 2005). Within NLP, the cosine similarity

sc(xj ,x j) =
x⊤j x j

∥xj∥2 · ∥x j∥2
(6)

is therefore most often used to measure the similarity between embeddings (Mo-
hammad and Hirst, 2012; Schubert, 2021). The cosine similarity ranges from -1
(opposite) to 1 (similar). In cluster analysis, however, we generally require the
(dis)similarity measure to range from 0 to 1 (Everitt et al., 2011; Kogan et al., 2005;
Hastie et al., 2009). In this case, we can use the angular similarity

sa(xj ,x j) = 1−
cos−1(sc(xj ,x j))

π
(7)

which is restricted to [0, 1]. Hereto related is the angular distance

da(xj ,x j) =
cos−1(sc(xj ,x j))

π
. (8)

The angular distance is a proper distance metric since it satisfies the triangle
inequality d(xj ,x j) ⩽ d(xj ,xz) + d(xz,x j) for any z (Schubert, 2021; Phillips,
2021). Conversely, the distance measure based on the cosine similarity does not
satisfy this inequality.

B.2 Clustering algorithms

K-means clustering With k-means clustering (MacQueen et al., 1967), we group
the J categories into J ′ clusters (C1, . . . , CJ′) by minimizing

argmin
(C1,...,CJ′ )

J′∑
j′=1

∑
xj∈Cj′

d(xj , cj′) = argmin
(C1,...,CJ′ )

J′∑
j′=1

∑
xj∈Cj′

∥xj − cj′∥22 (9)

where cj′ denotes the cluster centre or centroid of cluster Cj′ . cj′ is the sample
mean of all xj ∈ Cj′

cj′ =
1

nj′

∑
xj∈Cj′

xj . (10)

where nj′ denotes the number of observations in cluster Cj′ . Hence, with (9) we
minimize the within-cluster sum of squares.

K-means is only suited for numeric features, is sensitive to outliers, has several
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local optima and the results are sensitive to the initialization (Kogan et al., 2005;
Everitt et al., 2011; Ostrovsky et al., 2012; Hastie et al., 2009).

K-medoids clustering Contrary to k-means, k-medoids clustering (Kaufman and
Rousseeuw, 1990b) uses an existing data point xj as cluster centre. In addition, the
distance measure in k-medoids clustering is not restricted to the Euclidean distance
(Rentzmann and Wuthrich, 2019; Hastie et al., 2009). It can be used with any
distance or dissimilarity measure. With k-medoids clustering we minimize

argmin
(C1,...,CJ′ )

J′∑
j′=1

∑
xj∈Cj′

d(xj , cj′) (11)

where cj′ is the observation for which
∑

xj∈Cj′
d(xj , cj′) is minimal (Struyf et al.,

1997). This observation is most central within cluster Cj′ and is called a medoid.

K-medoids is applicable to any feature type and is less sensitive to outliers.
Nonetheless, it still suffers from local optima and is sensitive to the initialization
(Onan, 2017; Yu et al., 2018).

Spectral clustering In spectral clustering, we represent the data using an undi-
rected similarity graph G = ⟨V,E⟩, where V = (v1, . . . , vj , . . . , vJ ) stands for the set
of vertices and E denotes the set of edges (Hastie et al., 2009; von Luxburg, 2007;
Wierzchoń and Kłopotek, 2019). The weight of the edges are represented using a
J × J similarity matrix S which contains all pairwise similarities s(·, ·) ⩾ 0 between
the observations. The diagonal entries in the S matrix are equal to zero. Vertices
vj and v j are connected if s(xj ,x j) > 0. Hereby, we reformulate clustering as a
graph-partitioning problem. We want to partition the graph such that edges within
a group j′ have high weights and edges between different groups j′ ̸= j′ have low
weights.

To represent the degree of the vertices, we set up a diagonal matrix D with
diagonal elements (j, j) =

∑J
j=1 s(xj ,x j). We use D to transform the similarity

matrix to the Laplacian matrix L = D − S. Next, we compute the J eigenvectors
(u1, . . . ,uJ ) of L. To cluster the observations in J ′ groups, we use the J ′ eigenvectors
(u1, . . . ,uJ′) corresponding to the smallest eigenvalues and stack these in columns
to form the matrix U ∈ RJ×J′

. In U , the jth row corresponds to the original
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observation xj . In the ideal case of J ′ true clusters, L is a block diagonal matrix

L =


L1

L2

. . .

LJ′

 (12)

when the vertices are ordered according to their cluster membership. Here, Lj′ is
the block corresponding to cluster j′. In this situation, L has J ′ eigenvectors with
eigenvalue zero and these eigenvectors are indicator vectors (i.e. the values are 1 for
a specific cluster j′ and 0 for clusters j′ ̸= j′) (Hastie et al., 2009; Poon et al., 2012;
von Luxburg, 2007). This allows us to easily identify the J ′ groups. Consequently, in
a second step, we apply k-means to U and the results hereof determine the clustering
solution.

We commonly refer to L as the unnormalized Laplacian. It is, however, preferred
to use a normalized version of L (von Luxburg et al., 2004; von Luxburg et al., 2008).
One way to normalize L is by applying the following transformation to L

D−1/2LD−1/2 = I −D−1/2SD−1/2. (13)

Spectral clustering can be used with any feature type and is less sensitive
to initialization issues, outliers and local optima (Verma and Meila, 2003; von
Luxburg, 2007). Moreover, spectral clustering is specifically designed to identify
non-convex clusters (for every pair of points inside a convex cluster, the connecting
straight line segment is within this cluster). Conversely, k-means, k-medoids and
HCA generally do not work well with non-convex clusters (Hastie et al., 2009; von
Luxburg, 2007). When compared to other clustering algorithms, spectral clustering
often has a better overall performance (Murugesan et al., 2021; Rodriguez et al.,
2019). Notwithstanding, spectral clustering is sensitive to the employed similarity
metric (Haberman and Renshaw, 1996; von Luxburg, 2007; de Souto et al., 2008).

Hierarchical clustering analysis Contrary to the other clustering methods,
hierarchical clustering analysis (HCA) does not start from a specification of the
number of clusters. Instead, it builds a hierarchy of clusters which can be either
top-down or bottom-up (Hastie et al., 2009). In the agglomerative or bottom-up
approach, each observation is initially assigned to its own cluster and we recursively
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merge clusters into a single cluster. When merging two clusters, we select the pair for
which the dissimilarity is smallest. Conversely, in the divisive or top-down approach,
we start with all observations assigned to one cluster and at each step, the algorithm
recursively splits one of the existing clusters into two new clusters. Here, we split
the cluster that results in the largest between-cluster dissimilarity. Consequently, in
both approaches we need to define how to measure the dissimilarity between two
clusters. With complete-linkage, for example, the distance between two clusters Cj′

and C j′ is defined as the maximum distance d(·, ·) between two observations in the
separate clusters

dCL(Cj′ , C j′) = max
xj∈Cj′ ,
xj∈Cj′

(d(xj , x j)). (14)

Conversely, with single-linkage we define the distance between two clusters as

dSL(Cj′ , C j′) = min
xj∈Cj′ ,
xj∈Cj′

(d(xj , x j)). (15)

Several other methods are available and we refer the reader to Hastie et al. (2009)
for an overview. The visualization of the different steps in HCA is often referred
to as a dendrogram. It plots a tree-like structure which shows how the clusters are
formed at each step in the algorithm. To partition the data into J ′ clusters, we cut
the dendrogram horizontally at the height that results in J ′ clusters.

Due to its design, HCA is less sensitive to initialization issues and local optima
in comparison to k-means. In addition, we can employ HCA with any type of
feature and HCA with single-linkage is more robust to outliers (Everitt et al., 2011;
Timm, 2002). The disadvantage of HCA is that divisions or fusions of clusters are
irrevocable (Kaufman and Rousseeuw, 1990a; Kogan et al., 2005). Once a cluster
has been split or merged, it cannot be undone.

B.3 Internal cluster evaluation criteria

In the aforementioned clustering techniques, J ′ can be considered a tuning parameter
that needs to be carefully chosen from a range of different (integer) values. Hereto, we
require a cluster validation index to select that J ′ which results in the most optimal
clustering solution. We divide the cluster validation indices into two groups, internal
and external (Liu et al., 2013; Everitt et al., 2011; Wierzchoń and Kłopotek, 2019;
Halkidi et al., 2001). Using external validation indices, we evaluate the clustering
criterion with respect to the true partitioning (i.e. the actual assignment of the
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observations to different groups is known). Conversely, we rely on internal validation
indices when we do not have the true cluster label at our disposal. Here, we evaluate
the compactness and separation of a clustering solution. The compactness indicates
how dense the clusters are and compact clusters are characterized by observations
that are similar and close to each other. Clusters are well separated when observations
of different clusters are dissimilar and far from each other. Consequently, we employ
internal validation indices to choose that J ′ which results in compact clusters that
are well separated (Liu et al., 2013; Everitt et al., 2011; Wierzchoń and Kłopotek,
2019).

Several internal validation indices exist and each index formalizes the compactness
and separation of the clustering solution differently. An extensive overview of internal
(and external) validation indices is given in Liu et al. (2013) and Wierzchoń and
Kłopotek (2019). Vendramin et al. (2010) conducted an extensive comparison of
the performance 40 internal validation criteria using 1080 data sets. These data
sets were grouped into four categories: a) a low number of features (i.e. ∈ (2, 3, 4));
b) a high number of features (i.e. ∈ (22, 23, 24)); c) a low number of true clusters
(i.e. ∈ (2, 4, 6)) and d) a high number of true clusters (i.e. ∈ (12, 14, 16)). The
authors concluded that the silhouette and Caliński-Harabasz indices are superior
compared to other validation criteria. These indices are well-known within cluster
analysis (Wierzchoń and Kłopotek, 2019; Govender and Sivakumar, 2020; Vendramin
et al., 2010). Nonetheless, the results of Vendramin et al. (2010) do no necessarily
generalize to our data set. We therefore include two additional, commonly used
criteria: the Dunn-index and Davies-Bouldin index.

Caliński-Harabasz index The Caliński-Harabasz (CH) index (Caliński and
Harabasz, 1974; Liu et al., 2013) is defined as the ratio of the average between- to
the within-sum of squares

∑J′

j′=1 nj′∥cj′ − c∥22/(J ′ − 1)∑J′

j′=1

∑
xj∈Cj′

∥xj − cj′∥22/(J − J ′)
(16)

where c denotes the global centre of all observations. We compute c as

c =
1

J

J∑
j=1

xj . (17)
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The higher this index, the more compact and well-separated the clustering solution.
This index is also known as the Pseudo F-statistic. The results of Vendramin et al.
(2010) suggest that the CH index performs better when the number of features is
high and the number of true clusters is low.

Davies-Bouldin index The Davis-Bouldin index is defined as (Davies and
Bouldin, 1979)

1

J ′

J′∑
j′=1

max
j′, j′ ̸=j′

 1
nj′

∑
xj∈Cj′

d(xj , cj′) +
1
nj′

∑
xj∈Cj′ d(x j, c j′)

d(cj′ , c j′)

 . (18)

The numerator in (18) captures the compactness of clusters Cj′ and C j′ and dense
clusters are characterized by low values. With the denominator, we measure the
distance between the centroids of clusters Cj′ and C j′ and this signifies how well
separated the clusters are. Hence, low ratios are indicative of dense clusters that are
well separated. By taking the maximum ratio for a specific cluster C j′ we take the
worst scenario possible.

According to Vendramin et al. (2010), the Davis-Bouldin index performs better
for data sets with fewer features and this finding was more pronounced for data sets
with a low number of true clusters.

Dunn-index The Dunn-index (Dunn, 1974) is defined as the ratio of the minimum
distance between the clusters to the maximum distance within clusters

min
1⩽j′⩽J′

 min
1⩽ j′⩽J′

j ̸= j


min

xj∈Cj′
xj∈Cj′

d(xj , x j)

max
1⩽κ⩽J′

{
max

xj ,xj∈Cκ

d(xj , x j)

}

 (19)

The higher this index, the better the clustering solution. Several variants exist of
the Dunn-index (see, for example, Vendramin et al. (2010)) and we focus on the
original formulation as given in (19). In Vendramin et al. (2010), the Dunn-index
performed reasonably when focusing on the difference between the true and selected
number of clusters. Notwithstanding, of all four indices considered in this chapter,
it has the lowest performance.
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Silhouette index For a specific observation xj ∈ Cj′ , we define the average
dissimilarity of xj to all other observations in cluster Cj′ as

a(xj) =
1

nj′ − 1

∑
xj∈Cj′ , j̸=j

d(xj , x j) (20)

and the average dissimilarity of xj to all observations in cluster C j′ as

e(xj) =
1

n j′

∑
xj∈Cj′

d(xj ,x j). (21)

We compute e(xj) for all clusters Cj′ ̸= C j′ and calculate

b(xj) = min
Cj′ ̸=Cj′

e(xj). (22)

We call b(xj) the neighbour of xj as it is the closest observation of another cluster.
We calculate the silhouette value s(xj) as

s(xj) =
b(xj)− a(xj)

max(a(xj), b(xj))
. (23)

s(xj) indicates how well an observation xj is clustered and from the definition, it
follows that −1 ⩽ s(xj) ⩽ 1. For clusters with a single observation, we set s(·) = 0.
Values close to one indicate that the observation has been assigned to the appropriate
cluster, since the smallest between dissimilarity b(xj) is much larger than the within
dissimilarity a(xj) (Rousseeuw, 1987). Conversely, when s(xj) is close to -1, xj lies
on average closer to the neighbouring cluster than to its own cluster and this suggests
that this observation is not assigned to the appropriate cluster. We calculate the
average silhouette width

s̃ =
1

J

∑
j=1

s(xj). (24)

to evaluate how good the clustering solution is. Higher s̃’s are associated with a
better clustering solution.

In the study of Vendramin et al. (2010), the silhouette index had the most robust
performance with regard to the different evaluation scenarios. The other evaluation
criteria were more sensitive to the dimensionality of the data and the true number
of clusters.
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B.4 Empirical distribution of the category-specific weighted
average damage rates and expected claim frequencies

Figure B.5: Empirical distribution of the category-specific weighted average damage rate
at different levels in the hierarchy. One large value is removed to obtain a
better visualization.
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Figure B.6: Empirical distribution of the category-specific expected claim frequency at
different levels in the hierarchy. Two large values are removed to obtain a
better visualization.
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B.5 Low-dimensional representation of the embedding vectors

Figure B.7: Low-dimensional visualization of all embedding vectors, resulting from the
pre-trained USE v4 encoder, constructed for different categories at the
subsection level. The text boxes display the textual labels. The blue
dots connected to the boxes depict the position in the low-dimensional
representation of the embeddings.
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Figure B.8: Low-dimensional visualization of all embedding vectors, resulting from the
pre-trained USE v5 encoder, constructed for different categories at the
subsection level. The text boxes display the textual labels. The blue
dots connected to the boxes depict the position in the low-dimensional
representation of the embeddings.
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B.6 Predictive performance when using the angular distance
matrix D for the cluster evaluation criteria

Table B.1: Predictive performance on the training and test set, when the internal eval-
uation criterion is calculated using the angular distance and the complete
feature vector.

Development Validation
J ′ ∑J′

j′=1 K
′
j′ Gini-index Gini-index Loss ratio

Benchmark 18 641 0.658 0.585 1.006
HCA:
Silhouette index 7 137 0.669 0.625 1.008
Dunn index 14 322 0.662 0.604 1.008
Davies-Bouldin index 14 316 0.670 0.613 1.007
CH index 13 157 0.658 0.604 1.011

k-medoids:
Silhouette index 6 135 0.655 0.593 1.008
Dunn index 14 315 0.656 0.576 1.006
Davies-Bouldin index 14 303 0.674 0.621 1.011
CH index 10 125 0.658 0.627 1.010

Spectral clustering:
Silhouette index 8 150 0.670 0.599 1.009
Dunn index 14 299 0.663 0.585 1.008
Davies-Bouldin index 16 323 0.668 0.583 1.006
CH index 16 224 0.671 0.619 1.008
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C.1 Default configuration of the simulation engine

The default settings for the database, policyholder, contract-specific and claim
characteristics are given in Table C.2. The default data-generating claim frequency
and claim severity models are given in Appendix C.4. In Appendix C.5, we specify
the default data-generating fraud model.

We define the level of class imbalance as the ratio of the number of fraudulent
claims to the total number of claims. Further, ExcludeParties is a parameter that
allows to exclude certain types of parties from the network. We include all types of
parties by default.
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Table C.2: Default configuration of the variables in the simulation engine.

Variable Description Default value/generator

D
at

a
se

t

TargetPrev Target level of class imbalance 0.01
NrPH Number of policyholder 10000
NrExperts Number of unique experts ⌊0.01NrPH⌋
NrBrokers Number of unique brokers ⌊0.01NrPH⌋
NrGarages Number of unique garages ⌊0.03NrPH⌋
NrPersons Number of unique persons 1.5NrPH
ExcludeParties Type of party to exclude Expert

P
ol

ic
yh

ol
de

r

AgePH Age of the policyholder in years, default range is
[18, 80]

N (40, 15)

GenderPH Gender of the policyholder, default settings are
female if ui ⩽ 0.28, male if ui > 0.29 and
non-binary otherwise

ui ∼ U(0, 1)

ExpPH Exposure of the policyholder in years, default range
is [0, 20]

N (5, 1.5)

RateNrContracts Rate parameter λi for generating NrContractsPH λi = 0.25(1.05− 2.5× 10−6 × AgePHi +
0.0025× AgePH2i − 2.65× 10−5 × AgePH3i )

NrContractsPH Number of contracts. Default range is [1, 5] Poi(λi)

C
on

tr
ac

t-
sp

ec
ifi

c

ExpPHContracts Exposure corresponding to the contract ExpPHi− U(0, ExpPHi/2) if NrContractsPHi > 1,
else ExpPHContractsij = ExpPHi

AgeCar Age of the vehicle in years max(N (7.5,
√
5), ExpPHContractsij)

OrigValueCar Original value of the vehicle Exp(λi/NrContractsPHi)

ValueCar Current value of the car OrigValueCarij(1− δa)AgeCarij

Coverage Type of coverage provided by the insurance
company (see Appendix C.3)

Multinomial(1, πTPL, πPO, πFO)

Fuel Type of fuel of the vehicle Bernoulli(0.3)
BonusMalus Level occupied in bonus-malus scale of the

insurance company
min(⌊G(1, 1/3)⌋, 22)

C
la

im

ClaimAge Number of months from the contract’s inception to
the date of the incident

⌊Exp(0.25)⌋

ClaimDate Number of years between the start of the contract max(U(0, ExpPHContractsij),
and the claim’s filing date ClaimAgeijk/12)

Police Whether police was called when the incident
happened

Bernoulli(0.25)

nPersons Number of people involved in the claim, range is [0,
5]

S
πp←−− x, S = (0, 1, 2, 3, 4, 5) and

πp = (0.025, 0.6, 0.2, 0.1, 0.1, 0.025)

a If OrigValueCar < 30000, δ = 0.15 and δ = 0.075 otherwise. Hence, more expensive cars have a lower depreciation rate.
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C.2 Limiting the range of feature values

The default range for AgePH is [18, 80]. Values generated outside of this range are
redistributed among the integer values falling inside the range, proportional to the
frequency of the values within this range. Hereafter, we take a random draw from
U(0, 1) and add this value to the integer to obtain a numeric value.

We specify [0, 20] as the default range for ExpPH. Furthermore, AgePH - ExpPH
cannot be smaller than the user-specified minimum for AgePH. This would imply
that the contract started before the policyholder is legal age of driving. Hereto, we
define MaxExpi = AgePHi - MinAge. For values outside the prespecified range, we
redraw a value from U(MinExp, MaxExpi).

We define [1, 5] as default range for NrContractsPH. Values outside this range
are rounded to the closest boundary.

C.3 Simulating type of coverage

The type of coverage is a nominal variable with three levels. We rely on a multinomial
regression model to generate the type of coverage as a function of ValueCar, AgeCar
and AgePH. The general form of the multinomial logistic regression model (Agresti,
2013) is

log

(
πj(xi)

πJ(xi)

)
= x⊤i βj , j = (1, . . . , J − 1),

where πj(xi) = P (Coveragei = j|xi) denotes the probability that Coveragei
equals category j. Coveragei denotes the response variable’s value for observation i
and here, we use j = (1, . . . , J) as an index for the categories of the response variable.
We use category J as reference category. xi denotes the covariate vector and βj is
the parameter vector for category j. For notational simplicity, we assume that xi is
fixed for all categories j = (1, . . . , J−1). Further,

∑J
j=1 πj(xi) = 1 ∀ i ∈ (1, . . . , N)

where N denotes the total number of observations.

The category-specific probability for category j = (1, . . . , J − 1) is calculated as

πj(xi) =
ex

⊤
i βj

1 +
∑J−1

h=1 e
x⊤

i βh
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and we calculate this probability for reference category J as

πJ(xi) =
1

1 +
∑J−1

h=1 e
x⊤

i βh

.

In our simulation engine, Coveragei ∈ (TPL, PO, FO) and we define

βTPL = (log(0.50), log(1.25), log(0.25)),

βPO = (log(1.25), log(0.75), log(1.05)),

βFO = (log(1.50), log(0.75), log(1.25)).

(25)

The covariate vector xi consists of the normalized values for the value of the car,
age of the car and age of the policyholder. Given a variable a = (a1, . . . , ai, . . . , aN ),
we normalize in [−1, 1] using

2
(a−min(a))

max(a)−min(a)
− 1. (26)

Hereafter, we calculate the probabilities (πTPL(xi), πPO(xi), πFO(xi)) for all
observations. We generate values for the type of coverage by taking random draws
from Multinomial(1, πTPL, πPO, πFO).

Using the default values (see equation (25)), the probability of signing up for
a full omnium is larger for expensive, relatively new cars and older policyholders.
Similarly, the probability of taking out a partial omnium is higher for expensive,
relatively new cars but here the effect of age is less strong. Young policyholders
with an inexpensive, older car have a higher probability to take out a policy with
only third party liability.

C.4 Claim frequency and claim severity model

Both the claim frequency and claim severity model are based on the results in
Henckaerts et al. (2018). In this paper, the authors fit a claim frequency and claim
severity model on a motor insurance portfolio from a Belgian insurer. Further,
(Henckaerts et al., 2018) used a data-driven method to bin the continuous vari-
ables AgePH, AgeCar and BonusMalus into categorical variables. These bins are
given in Table C.3. We denote these binned versions as AgePHBin, AgeCarBin and
BonusMalusBin. By default, we use these binned versions in the data-generating
claim frequency and claim severity model (see Table C.4).
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Table C.3: Bins of the continuous variables as used in Henckaerts et al. (2018).

Variable Bins
AgePHBin [18, 26]; (26, 30]; (30, 36]; (36, 50]; (50, 60]; (60, 65]; (65, 70];

(70, 80]

AgeCarBin [0, 5]; (5, 10]; (10, 20]; (20,max(AgeCar)]
BonusMalusBin [0, 1); [1, 2); [2, 3); [3, 7); [7, 9); [9, 11); [11, 22]

Table C.4: Default specification of the claim frequency and claim severity model.

Variable βcf βcs

(Intercept) -2.18 6.06
AgePH:

[18,26] (reference)
(26,30] log(0.85) log(0.85)

(30,36] log(0.75) log(0.75)

(36,50] log(0.70) log(0.85)

(50,60] log(0.60) log(0.85)

(60,65] log(0.55) log(1.15)

(65,70] log(0.60) log(1.25)

(70, max(AgePH)] log(0.70) log(1.50)

Coverage:
TPL (reference)
PO -0.12 -0.16
FO -0.11 0.11

AgeCarBin:
(0, 5] (reference)
(5,10] log(0.90) 0
(10,20] log(0.80) 0
(20,max(AgeCar)] log(0.60) 0

Fuel:
Gasoline/LPG/Other (reference)
Diesel log(1.19) 0

BonusMalusBin:
[0,1) (reference)
[1,2) 0.12 0.10
[2,3) 0.18 0.15
[3,7) 0.34 0.15
[7,9) 0.48 0.15
[9,11) 0.54 0.20
[11,22] 0.78 0.30



158 Appendix Chapter 4

C.5 Data generating fraud model and class imbalance

Table C.5 depicts the default specification of the data-generating fraud model. The
column names indicate which features are included, while the values represent
the corresponding value in βf . Further, in the data-generating model we use
the normalized version of the features ClaimAmount, ClaimAge, n1.size, n2.size,
AgePH and n2.ratioFraud (see (26)). Hereby, we bring all features to the same
scale. This ensures that the features’ effect sizes, as specified in βf , are comparable.
Furthermore, at the end of every iteration in Algorithm 4, we normalize both
n2.ratioFraud and n2.ratioNonFraud. We do so since the network grows with
every step in the algorithm. By normalizing these features, we aim to mitigate the
influence of fluctuating values across iterations (also see Appendix C.6).

Table C.5: Default specification of the data-generating fraud model.

ClaimAmount ClaimAge n1.size n2.size NrContractsPH AgePH n2.ratioFraud
βf 0.20 -0.35 2.00 -2.00 -1.50 -2.00 3.00

Further, the simulation engine allows us to specify the desired level of class
imbalance pt. We achieve this by employing the following approach in the third step
of Algorithm 4, where we generate the claim labels

Yijk ∼ Bern (πijk) and πijk =
e0βf+fx

⊤
ijkβf

1 + e0βf+fx⊤
ijkβf

. (27)

Before generating Yijk, we set a seed for the random number generator to ensure
reproducibility. We achieve the desired level of imbalance pt by optimizing

min
0βf

|pt − ap| (28)

where

ap =

∑
i,j,k I(Yijk = fraudulent)∑

i,j,k I(Yijk = fraudulent OR Yijk = non-fraudulent)
(29)

denotes the actual level of class imbalance in the synthetic data set (using all available
claim labels). Here, I(·) represents the indicator function.
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C.6 Distribution values n2.ratioFraud

Figure C.9 depicts the features values of n2.ratioFraud across the different itera-
tions of Algorithm 4 when generating the claim labels in a synthetic data set. The
horizontal axis depicts the iteration and the vertical axis the feature values. Per
iteration, we show the empirical distribution of n2.ratioFraud in the random subset
(see Algorithm 4). In the first iterations, we have a small number of fraudulent claims.
As a consequence, most observations have similar feature values for n2.ratioFraud.
The scarcity of distinct values is evident from the compactness of the violin plots.
With each iteration, the number of fraudulent claims grows, resulting in an increase
in distinct values for n2.ratioFraud. In Figure C.9, this is reflected by the increase
in width of the violin plots.

Figure C.9: Distribution of the values of n2.ratioFraud in each iteration. Per iteration,
the violin plot depicts the density of n2.ratioFraud in the subset.
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C.7 Predictive performance in the synthetic data sets

To obtain insights into the results in Section 4.4, we first fit the following model to
the investigated claims

logit(E[Yijk]) = 0βf + 1βfAgePHi + 2βfNrContractsPHij + 3βfClaimAmountijk

+ 4βfClaimAgeijk + 5βfn1.sizeijk + 6βfn2.sizeijk

+ 7βfn2.ratioFraudijk.
(30)

Hence, here we use the ground-truth Yijk instead of the expert judgement Y expert
ijk

as the response variable. Hereafter, we examine the performance on the investigated
(i.e. the in-sample data set) and uninvestigated (i.e. the out-of-sample data set)
claims. Figure C.10 depicts the performance on the in- and out-of-sample data sets.
Both the AUC and TDL indicate that the fitted models are substantially better than
a random model. In addition, compared to the in-sample data sets, the performance
is slightly lower on the out-of-sample data sets. Hence, the model is able to capture
the underlying relationships between the predictors and the target variable.

Figure C.10: Distribution of the performance measures in DNetwork. The grey line in
the plots corresponds to the performance of a random model. The in-
sample performance is evaluated using the ground truth label Yijk of the
investigated claims. The out-of-sample performance is assessed using the
ground truth label Yijk of the uninvestigated claims.
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