Skip to contents

All functions

actuaRE-package actuaRE
Handling Hierarchically Structured Risk Factors using Random Effects Models
adjustIntercept()
Adjust the intercept to regain the balance property
BalanceProperty()
Balance property
dataCar
data Car
.addREs()
Add random effects to the data frame
findbars()
Determine random-effects expressions from a formula
fixef(<hierCredGLM>) fixef(<hierCredTweedie>)
Extract the fixed-effects estimates from a fitted random effects model
fixed.effects fixef
Extract fixed-effects estimates
hachemeisterLong
Hachemeister Data Set
print(<hierCredGLM>) summary(<hierCredGLM>) fitted(<hierCredGLM>)
Class "hierCredGLM" of fitted random effects models estimated with Ohlsson's GLMC algorithm
hierCredGLM()
Combining the hierarchical credibility model with a GLM (Ohlsson, 2008)
print(<hierCredibility>) summary(<hierCredibility>) fitted(<hierCredibility>)
Class "hierCredibility" of fitted hierarchical credibility models
hierCredibility()
Hierarchical credibility model of Jewell
print(<hierCredTweedie>) summary(<hierCredTweedie>) fitted(<hierCredTweedie>)
Class "hierCredTweedie" of fitted random effects models estimated with Ohlsson's GLMC algorithm
hierCredTweedie()
Combining the hierarchical credibility model with a GLM (Ohlsson, 2008)
is.formula()
Formula
isNested()
Is f1 nested within f2?
glFormula()
Modular Functions for Mixed Model Fits
nobars()
Omit terms separated by vertical bars in a formula
NrUnique()
Number of unique elements in a vector
plotRE()
Visualizing the random effect estimates using ggplot2
predict(<hierCredGLM>)
Model predictions
predict(<hierCredibility>)
Model predictions
predict(<hierCredTweedie>)
Model predictions
print(<BalanceProperty>)
Print method for an object of class BalanceProperty
ranef(<hierCredibility>) ranef(<hierCredGLM>) ranef(<hierCredTweedie>)
Extract the random effect estimates from a fitted random effects model
ranef
Extract the modes of the random effects
tweedieGLMM()
Fitting a Tweedie GLMM, using the initial estimates of hierCredTweedie
weights(<cpglm>) weights(<speedglm>) weights(<hierCredGLM>) weights(<hierCredTweedie>)
Extract the model weights